Topological modifications due to ramped vanes in a flare-induced shock–boundary layer interaction flowfield

Abstract

Effect of ′ramped vane′-type vortex generators on a shock-induced flow separation in the vicinity of an axisymmetric compression corner was evaluated. Numerical simulations were performed at Mach 2 on a cone–cylinder–flare model with a flare angle of 24°. The undisturbed boundary layer thickness (δ) at the location of the compression corner was 5 mm. A single array of these vortex generators with a device height of 0.28δ (1.4 mm) was placed on the cylinder surface at different streamwise positions, viz. 5δ, 10δ and 15δ upstream of the compression corner, and their ability to manipulate the shock–boundary layer interaction flowfield was compared. The presence of these devices caused substantial changes in the interaction region and the separation bubble structure. The separation bubble transformed into a series of spade-shaped structures with pockets of attached flow in between them. The ramped vanes increased the separation length along the device centreline, but this effect was attenuated considerably, by bringing them closer to the interaction region. Moving the ramped vanes closer also had a collapsing effect on the spade-shaped structures, which simultaneously widened the attached flow zones in between them.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Abbreviations

F1, F2 :

Separation foci

h:

Height of the ramped vane device (1.4 mm)

HU :

Height of the triple point in the uncontrolled interaction

L:

Upstream influence length (mm)

LAvg :

Average upstream influence length in the controlled interactions (mm)

LU :

Upstream influence length for the uncontrolled interaction (mm)

N:

Attachment node

P:

Local mean wall static pressure (kPa)

PInf :

Freestream static pressure (kPa)

PO :

Stagnation pressure (kPa)

R:

Radial coordinate (mm)

RV:

Ramped vane

S:

Separation length/thickness (mm)

SU :

Separation length/thickness for the uncontrolled interaction (mm)

SP:

Saddle point

V:

Local velocity (m/s)

VInf :

Freestream velocity (m/s)

X:

Axial coordinate (mm)

XRV :

Axial position of the RV array (mm)

β:

Main shock angle (~ 41°)

δ:

Boundary layer thickness (5 mm)

θ:

Azimuthal coordinate (deg)

ρ:

Local density (kg/m3)

ρInf :

Freestream density (kg/m3)

ωx :

Streamwise vorticity (s1)

References

  1. Ahmed MYM, Qin N (2010) Drag reduction using aerodisks for hypersonic hemispherical bodies. J Spacecr Rockets 47(1):62–80. https://doi.org/10.2514/1.46655

    Article  Google Scholar 

  2. Anderson BH, Tinapple J. and Surber J (2006) Optimal Control of Shock Wave Turbulent Boundary Layer Interaction using Micro Array Actuation. 3rd AIAA Flow Control Conference, AIAA Paper 2006 – 3197. doi: https://doi.org/10.2514/6.2006-3197

  3. Andreopoulos J, Muck KC (1987) Some new aspects of the shock wave boundary layer interaction in compression ramp flows. J Fluid Mech 180:405–428. https://doi.org/10.1017/S0022112087001873

    Article  Google Scholar 

  4. Ashill PR, Fulker JL and Hackett KC, (2002) Studies of flows induced by Sub Boundary layer Vortex Generators (SBVGs). AIAA Paper. https://doi.org/10.2514/6.2002-968

    Article  Google Scholar 

  5. Babinsky H, Edwards JA (1996) On the incipient separation of a turbulent hypersonic boundary layer. Aeronaut J 100(996):209–214. https://doi.org/10.1017/S0001924000067166

    Article  Google Scholar 

  6. Babinsky H, Li Y, Pitt Ford CW (2009) Microramp control of oblique shock-wave/boundary-layer interactions. AIAA J 47(3):668–675. https://doi.org/10.2514/1.38022

    Article  Google Scholar 

  7. Barter JW, Dolling DS (1995) Reduction of Fluctuating Pressure Loads in Shock/Boundary Layer Interactions using Vortex Generators. AIAA J 33(10):1842–1849. https://doi.org/10.2514/3.12736

    Article  Google Scholar 

  8. Blevins RD, BofIlios D, Holehouse I, Hwa VW, Tratt MD, Laganelli AL, Pozefsky P and Pierucci M (2009) Thermo-Vibro-Acoustic loads and fatigue of hypersonic flight vehivle structure. AFRL-RB-WP-TR-2009–3139

  9. Cole HA, Erickson AL and Rainey AG (1970) Buffeting during atmospheric ascent. NASA SP-8001

  10. Coleman GT, Stollery JL (1973) Incipient Separation of Axially symmetric Hypersonic Turbulent Boundary Layers. AIAA Journal 12(1):119–120. https://doi.org/10.2514/3.49175

    Article  Google Scholar 

  11. Delery J (2013) Three-dimensional Separated Flow Topology: Critical Points. Separation Lines and Vortical Structures, John Wiley and Sons Inc, USA

    Google Scholar 

  12. Dolling DS, Murphy MT (1983) Unsteadiness of the separation shock wave structure in a supersonic compression ramp flow field. AIAA J 21(12):1628–1634. https://doi.org/10.2514/3.60163

    Article  Google Scholar 

  13. Dolling DS, Brusniak L (1989) Separation shock motion in fin, cylinder, and compression ramp - induced turbulent interactions. AIAA J 27(6):734–742. https://doi.org/10.2514/3.10173

    Article  Google Scholar 

  14. Dolling DS (2001) Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA J 39(8):1517–1531. https://doi.org/10.2514/2.1476

    Article  Google Scholar 

  15. Edney B (1968) Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of impinging shock FFA Report. Bromma, Aeronautical Research Institute of Sweden

    Google Scholar 

  16. Erengil ME, Dolling DS (1993) Effect of sweepback on unsteady separation in Mach 5 compression ramp interactions. AIAA J 31(2):302–311. https://doi.org/10.2514/3.60176

    Article  Google Scholar 

  17. Ericcson LE, Reding JP (1965) Analysis of flow separation effects on the dynamics of a large space booster. J of Spacecr Rockets 2(4):481–490. https://doi.org/10.2514/3.28216

    Article  Google Scholar 

  18. Estruch-Samper D, Vanstone L, Hillier R, Ganapathisubramani B (2015) Micro vortex generator control of axisymmetric high-speed laminar boundary layer separation. Shock Waves 25(5):521533. https://doi.org/10.1007/s00193-014-0514-7

    Article  Google Scholar 

  19. Giepman RHM, Schrijer FFJ, van Oudheusden BW (2014) Flow control of an oblique shock wave reflection with micro-ramp vortex generators: Effect of location and size. Phys Fluids 26(066101):1–16. https://doi.org/10.1063/1.4881941

    Article  Google Scholar 

  20. Ginoux JJ (1971) Streamwise vortices in reattaching high speed flows: A suggested approach. AIAA J 9(4):759–760. https://doi.org/10.2514/3.6271

    Article  Google Scholar 

  21. Grilli M, Hickel S, Adams NA (2013) Large eddy simulation of a supersonic turbulent boundary layer over a compression-expansion ramp. Int J Heat Fluid Flow 42:79–93. https://doi.org/10.1016/j.ijheatfluidflow.2012.12.006

    Article  Google Scholar 

  22. Heffener KS, Chpoun A, and Lengrand JC (1993) Experimental Study of Transitional Axisymmetric Shock-Boundary Layer Interactions at Mach 5. 23rd Fluid Dynamics, Plasmadynamics and Lasers Conference, AIAA Paper 1993–3131, doi: https://doi.org/10.2514/6.1993-3131

  23. Holden HA, and Babinsky H (2004) Vortex Generators Near Shock/Boundary Layer Interactions. 42nd AIAA Aerospace Sciences Meeting, AIAA Paper 2004–1242. doi: https://doi.org/10.2514/6.2004-1242

  24. Kistler AL (1964) Fluctuating wall pressure under a separated supersonic flow. J Acoust Soc Am 36(3):543–550. https://doi.org/10.1121/1.1918998

    Article  Google Scholar 

  25. Kontis K, Stollery JL (1999) Incipient Separation on flared bodies at hypersonic speeds. Aeronaut J 103(1027):405–414. https://doi.org/10.1017/S0001924000027950

    Article  Google Scholar 

  26. Kuehn DM (1962) Laminar boundary-layer separation induced by flares on cylinders at zero angle of attack. Technical Report R-146.

  27. Lee S, Loth E, Babinsky H (2011) Normal shock boundary layer control with various vortex generator geometries. Computer and Fluids. 49:233–246. https://doi.org/10.1016/j.compfluid.2011.06.003

    Article  MATH  Google Scholar 

  28. Lee S, Loth E (2012) Impact of ramped vanes on normal shock boundary layer interaction. AIAA J 50(10):2069–2079. https://doi.org/10.2514/1.J051253

    Article  Google Scholar 

  29. Lee S, Loth E (2018) On ramped vanes to control normal shock boundary layer interactions. Aeronaut J 122(1256):1568–1585. https://doi.org/10.1017/aer.2018.88

    Article  Google Scholar 

  30. Lighthill JM (1963) Attachment And Separation In Three-Dimensional Flow. In: Rosenhead L (ed) Laminar Boundary-Layer Theory. Oxford University Press, Oxford, UK, pp 77–82

    Google Scholar 

  31. Liou MS, Steffen C (1993) A new flux splitting scheme. J Comput Phys 107(1):23–39. https://doi.org/10.1006/jcph.1993.1122

    MathSciNet  Article  MATH  Google Scholar 

  32. Lu FK (2015) Visualization of supersonic flow around a sharp-edged, sub boundary-layer protuberance. J Visualization 18(4):619–629. https://doi.org/10.1007/s12650-014-0272-8

    Article  Google Scholar 

  33. Martis RR, Misra A (2017) Separation attenuation in swept shock wave-boundary layer interactions using different micro vortex generator geometries. Shock Waves 27(5):747–760. https://doi.org/10.1007/s00193-016-0690-8

    Article  Google Scholar 

  34. Maull DJ (1960) Hypersonic flow over axially symmetric spiked bodies. J Fluid Mech 4:584–592. https://doi.org/10.1017/S0022112060000815

    MathSciNet  Article  Google Scholar 

  35. Narayanaswamy V, Raja LL, Clemens NT (2010) Characterization of a high-frequency pulsed-plasma jet actuator for supersonic flow control. AIAA J 48(2):297–305. https://doi.org/10.2514/1.41352

    Article  Google Scholar 

  36. Nilavarasan T, Joshi GN, Misra A, Manisankar C, and Verma SB (2019) Control of Flare Induced Shock–Boundary Layer Interaction using Micro Vortex Generators. Proceedings of the 32nd International Symposium on Shock Waves, Singapore, 2019. doi: https://doi.org/10.3850/978-981-11-2730-4_0094-cd

  37. Nilavarasan T, Joshi GN, Misra A (2020) Effect of microramps on flare induced shock–boundary layer interaction. The Aeronaut J 124(1271):121–149. https://doi.org/10.1017/aer.2019.138

    Article  Google Scholar 

  38. Panaras AG, Lu FK (2015) Micro-vortex generators for shock wave/boundary layer interactions. Prog Aerosp Sci 74:16–47. https://doi.org/10.1016/j.paerosci.2014.12.006

    Article  Google Scholar 

  39. Priebe S, Martin MP (2012) Low frequency unsteadiness in shock wave - turbulent boundary layer interaction. J Fluid Mech 699:1–49. https://doi.org/10.1017/jfm.2011.560

    Article  MATH  Google Scholar 

  40. Raman KR (1974) A study of surface pressure fluctuations in hypersonic turbulent boundary layers. NASA CR-2386.

  41. Ramaswamy DP, Schreyer A-M (2019) Effect of jet spacing in separation control with air jet vortex generators. AIAA Paper. https://doi.org/10.2514/6.2019-1653

    Article  Google Scholar 

  42. Roshko A, Thomke GJ (1976) Flare-induced interaction lengths in supersonic. Turbul Bound Layers AIAA J 14(7):873–879. https://doi.org/10.2514/3.61429

    Article  Google Scholar 

  43. Rybalko M, Babinsky H, Loth E (2010) VGs for a normal SBLI with a downstream diffuser. AIAA Paper. https://doi.org/10.2514/2010-4464

    Article  Google Scholar 

  44. Schreyer A-M, Sahoo D, Smits AJ (2011) Experiments on the influence of a microramp array on a hypersonic shock turbulent boundary layer interaction. AIAA Paper. https://doi.org/10.2514/6.2011-3428

    Article  Google Scholar 

  45. Settles GS (2001) Schlieren and Shadowgraph techniques Visualizing phenomena in transparent media. Verlag Berlin, Heidelberg, Springer. https://doi.org/10.1007/978-3-642-56640-0

    Google Scholar 

  46. Settles GS, Bogdonoff SM, Vas IE (1976) Incipient separation of a supersonic turbulent boundary layer at high reynolds numbers. AIAA Journal 14(1):50–56. https://doi.org/10.2514/3.61331

    Article  Google Scholar 

  47. Souverein LJ, Debieve JF (2010) Effects of air jet vortex generators on a shock wave boundary layer interaction. Exp Fluids 49(5):1053–1064. https://doi.org/10.1007/s00348-010-0854-8

    Article  Google Scholar 

  48. Spalart PR and Allmaras SR (1992) A One-Equation Turbulence Model for Aerodynamic Flows. 30th Aerospace Sciences Exhibit, AIAA Paper 1992–0439. doi: https://doi.org/10.2514/6.1992-439

  49. Sriram R, Jagadeesh G (2014) Shock tunnel experiments on control of shock induced large separation bubble using boundary layer bleed. Aerosp Sci Technol 36(7):87–93. https://doi.org/10.1016/j.ast.2014.04.003

    Article  Google Scholar 

  50. Su C, Li Y, Cheng B, Wang J, Cao J (2010) MHD flow control of oblique shock waves around ramps in low-temperature supersonic flows. Chin J Aeronaut 23(1):22–32. https://doi.org/10.1016/P1000-9361(09)60183-7

    Article  Google Scholar 

  51. Taylor GI, Maccoll JW (1933) The air pressure on a Cone Moving at High Speeds–I. Proc R Soc Lond Ser A 139(838):278–297. https://doi.org/10.1098/rspa.1933.0018

    Article  MATH  Google Scholar 

  52. Titchener N, Babinsky H (2015) A review of the use of vortex generators for mitigating shock-induced separation. Shock Waves 25(5):473–494. https://doi.org/10.1007/s00193-015-0551-x

    Article  Google Scholar 

  53. Upadhya AR and Somashekar BR (1984) Review of launch vehicle related aeroelastic instability studies at NAL. In: Analysis of structures – A commemorative volume published on the occasion of the 60th anniversary of Dr. S.R. Valluri, NAL Bengaluru, India.

  54. Verma SB, Koppenwallner G (2002) Unsteady separation in flare-induced hypersonic shock-wave-boundary-layer interaction flowfield. J Spacecr Rockets 39(3):467–470. https://doi.org/10.2514/2.3831

    Article  Google Scholar 

  55. Verma SB, Manisankar C, Raju C (2012) Control of shock unsteadiness in shock boundary layer interaction on a compression corner using a mechanical vortex generators. Shock Waves 22(4):327–339. https://doi.org/10.1007/s00193-012-0369-8

    Article  Google Scholar 

  56. Verma SB, Manisankar C (2017) Assessment of various low-profile Mechanical vortex generators in controlling a shock induced separation. AIAA J 55(7):1–13. https://doi.org/10.2514/1.J055446

    Article  Google Scholar 

  57. Verma SB, Manisankar C (2018) Control of incident shock – induced separation using vane-type vortex generating devices. AIAA J 56(4):1600–1615. https://doi.org/10.2514/1.J056460

    Article  Google Scholar 

  58. Verma SB, Manisankar C (2019) Study of Compression-Ramp-Induced Interaction with Steady Microjets. AIAA J 57(7):2892–2904. https://doi.org/10.2514/1.J057509

    Article  Google Scholar 

  59. Volpiani PS, Bernardini M, Larsson J (2018) Effects of a non-adiabatic wall on supersonic shock boundary layer interactions. Phy Rev Fluids. 3(8):083401. https://doi.org/10.2514/6.2018-1806

    Article  Google Scholar 

  60. Xue DW, Chen ZH, Jiang XH, Fan BC (2014) Numerical investigations on the wake structures of micro-ramps and micro-vanes. Fluid Dyn Res 46(015505):1–11. https://doi.org/10.1088/0169-5983/46/1/015505

    Article  Google Scholar 

  61. Yan Y, Chen L, Lee Q and Liu C, (2017) Numerical study of micro-ramp vortex generator for supersonic ramp flow control at Mach 2.5. Shock Waves 27(1): 79–96. doi: https://doi.org/10.1007/s00193-016-0633-4

Download references

Acknowledgements

The first author wishes to thank DIAT for the institute fellowship. The technical support of Mr. A. Narayana, Mr. M. S. Eshwar and Mr. V. Biju during the wind tunnel testing at CSIR-NAL is gratefully acknowledged. Special thanks to Mr. Bhushan Lokhande, Mr. Mandar Mate, Mr. Vaibhav Gonjari of the Department of Aerospace Engineering, DIAT for their assistance during the procurements and model fabrication process. The support of Mr. Gabriel Joseph during the computations is also recognized.

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Nilavarasan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nilavarasan, T., Joshi, G.N., Misra, A. et al. Topological modifications due to ramped vanes in a flare-induced shock–boundary layer interaction flowfield. J Vis (2021). https://doi.org/10.1007/s12650-020-00735-x

Download citation

Keywords

  • Compression corner
  • Flare
  • Flow control
  • Vortex generators
  • Flow separation