SemanticAxis: exploring multi-attribute data by semantic construction and ranking analysis

Abstract

Mining the distribution of features and sorting items by combined attributes are 2 common tasks in exploring and understanding multi-attribute (or multivariate) data. Up to now, few have pointed out the possibility of merging these 2 tasks into a united exploration context and the potential benefits of doing so. In this paper, we present SemanticAxis, a technique that achieves this goal by enabling analysts to build a semantic vector in two-dimensional space interactively. Essentially, the semantic vector is a linear combination of the original attributes. It can be used to represent and explain abstract concepts implied in local (outliers, clusters) or global (general pattern) features of reduced space, as well as serving as a ranking metric for its defined concepts. In order to validate the significance of combining the above 2 tasks in multi-attribute data analysis, we design and implement a visual analysis system, in which several interactive components cooperate with SemanticAxis seamlessly and expand its capacity to handle complex scenarios. We prove the effectiveness of our system and the SemanticAxis technique via 2 practical cases.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Notes

  1. 1.

    Reduced space refers to the 2D plane created by DR algorithms.

References

  1. Alsakran J, Chen Y, Zhao Y, Yang J, Luo D (2011) Streamit: dynamic visualization and interactive exploration of text streams. In: 2011 IEEE Pacific Visualization Symposium, pp. 131–138. IEEE

  2. Berger E (2020) Csrankings. http://csrankings.org/. Accessed 25 April

  3. Bradel L, North C, House L (2014) Multi-model semantic interaction for text analytics. In: 2014 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 163–172. IEEE

  4. Carenini G, Loyd J (2004) Valuecharts: analyzing linear models expressing preferences and evaluations. In: Proceedings of the working conference on Advanced visual interfaces, pp. 150–157. ACM

  5. Cavallo M, Demiralp Ç (2018) A visual interaction framework for dimensionality reduction based data exploration. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, p. 635. ACM

  6. Endert A, Fiaux P, North C (2012) Semantic interaction for visual text analytics. In: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 473–482

  7. Endert A, Han C, Maiti D, House L, North C (2011) Observation-level interaction with statistical models for visual analytics. In: 2011 IEEE conference on visual analytics science and technology (VAST), pp. 121–130. IEEE

  8. Endert A, Hossain MS, Ramakrishnan N, North C, Fiaux P, Andrews C (2014) The human is the loop: new directions for visual analytics. J Intell Inf Syst 43(3):411–435

    Article  Google Scholar 

  9. Few S (2012) Show Me the Numbers: Designing Tables and Graphs to Enlighten, 2nd edn. Analytics Press, Oakland, CA, USA

    Google Scholar 

  10. Gleicher M (2013) Explainers: expert explorations with crafted projections. IEEE Trans Vis Comput Graph 19(12):2042–2051

    Article  Google Scholar 

  11. Gratzl S, Lex A, Gehlenborg N, Pfister H, Streit M (2013) Lineup: visual analysis of multi-attribute rankings. IEEE Trans Vis Comput Graph 19(12):2277–2286

    Article  Google Scholar 

  12. Han Q, Thom D, John M, Koch S, Heimerl F, Ertl T (2019) Visual quality guidance for document exploration with focus+ context techniques. IEEE Trans Vis Comput Graph 26:2715

    Article  Google Scholar 

  13. Heimerl F, Gleicher M (2018) Interactive analysis of word vector embeddings. Comput Graph Forum 37:253–265

    Article  Google Scholar 

  14. Heimerl F, John M, Han Q, Koch S, Ertl T (2016) Docucompass: Effective exploration of document landscapes. In: 2016 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 11–20. IEEE

  15. Inselberg A (1985) The plane with parallel coordinates. Vis Comput 1(2):69–91

    MathSciNet  Article  Google Scholar 

  16. Ji X, Shen H-W, Ritter A, Machiraju R, Yen P-Y (2019) Visual exploration of neural document embedding in information retrieval: Semantics and feature selection. IEEE Trans Vis Comput Graph 25(6):2181–2192

    Article  Google Scholar 

  17. Kandogan E (2000) Star coordinates: a multi-dimensional visualization technique with uniform treatment of dimensions. In: Proceedings of the IEEE Information Visualization Symposium, vol. 650, p. 22. Citeseer

  18. Kim H, Choo J, Park H, Endert A (2015) Interaxis: steering scatterplot axes via observation-level interaction. IEEE Trans Vis Comput Graph 22(1):131–140

    Article  Google Scholar 

  19. Kim M, Kang K, Park D, Choo J, Elmqvist N (2016) Topiclens: efficient multi-level visual topic exploration of large-scale document collections. IEEE Trans Vis Comput Graph 23(1):151–160

    Article  Google Scholar 

  20. Kwon BC, Kim H, Wall E, Choo J, Park H, Endert A (2016) Axisketcher: interactive nonlinear axis mapping of visualizations through user drawings. IEEE Trans Vis Comput Graph 23(1):221–230

    Article  Google Scholar 

  21. Li Z, Zhang C, Jia S, Zhang J (2019) Galex: exploring the evolution and intersection of disciplines. IEEE Trans Vis Comput Graph 26(1):1182–1192

    Google Scholar 

  22. Liu S, Bremer P-T, Thiagarajan JJ, Srikumar V, Wang B, Livnat Y, Pascucci V (2017) Visual exploration of semantic relationships in neural word embeddings. IEEE Trans Vis Comput Graph 24(1):553–562

    Article  Google Scholar 

  23. Liu Y, Jun E, Li Q, Heer J (2019) Latent space cartography: visual analysis of vector space embeddings. Comput Graph Forum 38:67–78

    Article  Google Scholar 

  24. Lvd Maaten, Hinton G (2008) Visualizing data using t-sne. J Mach Learn Res 9:2579–2605

    MATH  Google Scholar 

  25. Mamani GM, Fatore FM, Nonato LG, Paulovich FV (2013) User-driven feature space transformation. Comput Graph Forum 32:291–299

    Article  Google Scholar 

  26. McInnes L, Healy J, Melville J (2018) Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv1802.03426

  27. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases and their compositionality. Adv Neural Inf Process Syst 26:3111–3119

    Google Scholar 

  28. Paulovich FV, Eler DM, Poco J, Botha CP, Minghim R, Nonato LG (2011) Piece wise laplacian-based projection for interactive data exploration and organization. Comput Graph Forum 30:1091–1100

    Article  Google Scholar 

  29. Rao R, Card SK (1994) The table lens: merging graphical and symbolic representations in an interactive focus+ context visualization for tabular information. In: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 318–322

  30. Rodrigues N, Weiskopf D (2017) Nonlinear dot plots. IEEE Trans Vis Comput Graph 24(1):616–625

    Article  Google Scholar 

  31. Self JZ, Dowling M, Wenskovitch J, Crandell I, Wang M, House L, Leman S, North C (2018) Observation-level and parametric interaction for high-dimensional data analysis. ACM Trans Interact Intell Syst 8(2):1–36

    Article  Google Scholar 

  32. Self JZ, Vinayagam RK, Fry J, North C (2016) Bridging the gap between user intention and model parameters for human-in-the-loop data analytics. In: Proceedings of the Workshop on Human-In-the-Loop Data Analytics, pp. 1–6

  33. Stahnke J, Dörk M, Müller B, Thom A (2015) Probing projections: interaction techniques for interpreting arrangements and errors of dimensionality reductions. IEEE Tran Vis Comput Graph 22(1):629–638

    Article  Google Scholar 

  34. Tenenbaum J B, De Silva V, Langford J C (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323

    Article  Google Scholar 

  35. Tufte ER (2001) The visual display of quantitative information, vol 2. Graphics press Cheshire, Connecticut

    Google Scholar 

  36. Tufte ER, Goeler NH, Benson R (1990) Envis Inf, vol 126. Graphics press Cheshire, Connecticut

    Google Scholar 

  37. Wall E, Das S, Chawla R, Kalidindi B, Brown ET, Endert A (2017) Podium: ranking data using mixed-initiative visual analytics. IEEE Trans Vis Comput Graph 24(1):288–297

    Article  Google Scholar 

  38. Ware C (ed) (2013) Chapter Five - Visual Salience and Finding Information. Information Visualization, 3rd edn. Morgan Kaufmann, Boston, pp 139–177. https://doi.org/10.1016/B978-0-12-381464-7.00005-3.

  39. Weng D, Chen R, Deng Z, Wu F, Chen J, Wu Y (2018) Srvis: towards better spatial integration in ranking visualization. IEEE Trans Vis Comput Graph 25(1):459–469

    Article  Google Scholar 

  40. Wenskovitch J, Crandell I, Ramakrishnan N, House L, North C (2017) Towards a systematic combination of dimension reduction and clustering in visual analytics. IEEE Trans Vis Comput Graph 24(1):131–141

    Article  Google Scholar 

  41. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2(1–3):37–52

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all anonymous reviewers. This work was supported by National NSF of China (No. 61702359).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zeyu Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhang, C., Zhang, Y. et al. SemanticAxis: exploring multi-attribute data by semantic construction and ranking analysis. J Vis (2021). https://doi.org/10.1007/s12650-020-00733-z

Download citation

Keywords

  • Multivariable data
  • Multi-attribute rankings
  • Dimension reduction
  • Semantic modeling