Visual analytics and prediction system based on deep belief networks for icing monitoring data of overhead power transmission lines

Abstract

In this paper, a system is proposed for visualizing and analyzing icing monitoring data of power transmission lines. The distributions of temperature and humidity are visualized by two-dimensional maps with customizable map layers. The multi-dimensional monitoring data are visualized as parallel coordinates. Moreover, a prediction algorithm that is based on a hybrid deep belief network is integrated into the system for predicting the icing thickness. If the icing thickness of a certain location exceeds the threshold value, the historical meteorological data of the location can be visualized as line graphs, which helps to choose the appropriate de-icing measures. According to the experimental results, our system is capable of reflecting the statistical features of icing monitoring data with high accuracy of icing thickness prediction.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdiscip Rev Comput Stat 2(4):433–459

    Google Scholar 

  2. Andrews DF (1972) Plots of high-dimensional data. Biometrics 28:125–136

    Google Scholar 

  3. Borg I, Groenen PJ (2005) Modern multidimensional scaling: theory and applications. Springer, Berlin

    Google Scholar 

  4. Chen H, Li H, Fang Y, Chen Y (2016) Anisotropic parallel coordinates with adjustment based on distribution features. J Vis 19(2):327–335

    Google Scholar 

  5. Chen S, Dai D, Huang X, Sun M (2012) Short-term prediction for transmission lines icing based on bp neural network. In: Proceedings of IEEE Asia-Pacific power and energy engineering conference (APPEEC) 2012. IEEE, pp 1–5

  6. Cigré T (2006) 291 guidelines for meteorological icing models, statistical methods and topographical effects. In: Working Group B, vol 2

  7. Crickard P III (2014) Leaflet. Js Essentials. Packt Publishing Ltd, Birmingham

    Google Scholar 

  8. De Meester B, De Nies T, Verborgh R, Mannens E, Van de Walle R (2015) Reconnecting digital publications to the web using their spatial information. In: Proceedings of the 24th international conference on world wide web. ACM, pp 749–754

  9. Deng L, Yu D et al (2014) Deep learning: methods and applications. Found Trends® Signal Process 7(3–4):197–387

    MathSciNet  MATH  Google Scholar 

  10. Donohue RG, Sack CM, Roth RE (2014) Time series proportional symbol maps with Leaflet and JQuery. Cartogr Perspect 76:43–66

    Google Scholar 

  11. Elmqvist N, Dragicevic P, Fekete J-D (2008) Rolling the dice: multidimensional visual exploration using scatterplot matrix navigation. IEEE Trans Vis Comput Gr 14(6):1139–1148

    Google Scholar 

  12. Farzaneh M (2008) Atmospheric icing of power networks. Springer, Berlin

    Google Scholar 

  13. Flanagan D (2006) JavaScript: the definitive guide. O’Reilly Media Inc, Newton

    Google Scholar 

  14. Friendly M, Denis DJ (2001) Milestones in the history of thematic cartography, statistical graphics, and data visualization, vol 32. http://www.datavis.ca/milestones

  15. Furnas GW, Buja A (1994) Prosection views: dimensional inference through sections and projections. J Comput Gr Stat 3(4):323–353

    MathSciNet  Google Scholar 

  16. Gao J, Wang J (2011) A hybrid quantum-inspired immune algorithm for multiobjective optimization. Appl Math Comput 217(9):4754–4770

    MathSciNet  MATH  Google Scholar 

  17. Gong G, Mattevada S, O’Bryant SE (2014) Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas. Environ Res 130:59–69

    Google Scholar 

  18. Harman BI, Koseoglu H, Yigit CO (2016) Performance evaluation of idw, kriging and multiquadric interpolation methods in producing noise mapping: a case study at the city of Isparta, Turkey. Appl Acoust 112:147–157

    Google Scholar 

  19. Hinton GE (2002) Training products of experts by minimizing contrastive divergence. Neural Comput 14(8):1771–1800

    MATH  Google Scholar 

  20. Hinton GE, Osindero S, Teh Y-W (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554

    MathSciNet  MATH  Google Scholar 

  21. Ingram S, Munzner T, Olano M (2009) Glimmer: multilevel MDS on the GPU. IEEE Tran Vis Comput Gr 15(2):249–261

    Google Scholar 

  22. Inselberg A (1985) The plane with parallel coordinates. Vis Comput 1(2):69–91

    MathSciNet  MATH  Google Scholar 

  23. Kolar V, Ranu S, Subramainan AP, Shrinivasan Y, Telang A, Kokku R, Raghavan, S (2014) People in motion: spatio-temporal analytics on call detail records. In: Proceedings of sixth international conference on communication systems and networks (COMSNETS) 2014. IEEE, pp 1–4

  24. Laforte J, Allaire M, Laflamme J (1998) State-of-the-art on power line de-icing. Atmos Res 46(1):143–158

    Google Scholar 

  25. Li P, Li N, Li QM, Cao M, Chen HX (2011) Prediction model for power transmission line icing load based on data-driven. Adv Mater Res 143–144:1295–1299

    Google Scholar 

  26. Lv X, He Q (2011) Analysis of dicing techniques and methods of overhead transmission line. Proc Eng 15:1135–1139

    Google Scholar 

  27. Ma T, Niu D, Fu M (2016) Icing forecasting for power transmission lines based on a wavelet support vector machine optimized by a quantum fireworks algorithm. Appl Sci 6(2):54

    Google Scholar 

  28. Makkonen L (1998) Modeling power line icing in freezing precipitation. Atmos Res 46(1):131–142

    Google Scholar 

  29. Mehrjardi RT, Jahromi MZ, Mahmodi S, Heidari A (2008) Spatial distribution of groundwater quality with geostatistics (case study: Yazd-ardakan plain). World Appl Sci J 4(1):9–17

    Google Scholar 

  30. Myatt GJ, Johnson WP (2011) Making sense of data iii: a practical guide to designing interactive data visualizations, vol 3. Wiley, New York, p 3

    Google Scholar 

  31. Paulovich FV, Nonato LG, Minghim R, Levkowitz H (2008) Least square projection: a fast high-precision multidimensional projection technique and its application to document mapping. IEEE Trans Vis Comput Gr 14(3):564–575

    Google Scholar 

  32. Quint A (2003) Scalable vector graphics. IEEE MultiMed 10(3):99–102

    MathSciNet  Google Scholar 

  33. Radovic M, Adarkwa O (2015) The us bridge portal-visualization analytics applications for the national bridge inventory (nbi) database. SSRG Int J Civ Eng 2:1–5

    Google Scholar 

  34. Robbins JN (2012) Learning web design: a beginner’s guide to HTML. JavaScript, and web graphics. O’Reilly Media Inc, Newton

    Google Scholar 

  35. Rumelhart DE, Hinton GE, Williams RJ et al (1988) Learning representations by back-propagating errors. Cognit Model 5(3):1

    MATH  Google Scholar 

  36. Stein ML (2012) Interpolation of spatial data: some theory for kriging. Springer, Berlin

    Google Scholar 

  37. Tan Q, Xu X (2014) Comparative analysis of spatial interpolation methods: an experimental study. Sens Transducers 165(2):155

    Google Scholar 

  38. Tan Y, Yu C, Zheng S, Ding K (2013) Introduction to fireworks algorithm. Int J Swarm Intell Res 4(4):39–70

    Google Scholar 

  39. Teller S (2013) Data visualization with D3. Js. Packt Publishing Ltd, Birmingham

    Google Scholar 

  40. Valley RD, Drake MT, Anderson CS (2005) Evaluation of alternative interpolation techniques for the mapping of remotely-sensed submersed vegetation abundance. Aquat Bot 81(1):13–25

    Google Scholar 

  41. van Wijk JJ, van Liere R (1993) Hyperslice. In: Proceedings of IEEE conference on visualization 1993. IEEE, pp 119–125

  42. Wegman EJ (1990) Hyperdimensional data analysis using parallel coordinates. J Am Stat Assoc 85(411):664-675

    Google Scholar 

  43. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2(1–3):37–52

    Google Scholar 

  44. Xie B, Zhang C, Gong Q, Koji K, Zeng H, Zhao L,  Qiao H, Huang L (2018) Icing thickness prediction of overhead power transmission lines using parallel coordinates and convolutional neural networks. In: International conference on theory and applications of fuzzy systems and soft computing. Springer, pp 255–267

  45. Zeng X-J, Luo X-L, Lu J-Z, Xiong T-T, Pan H (2012) A novel thickness detection method of ice covering on overhead transmission line. Energy Proc 14:1349–1354

    Google Scholar 

  46. Zhang L, Zhou W, Jiao L (2004) Wavelet support vector machine. IEEE Trans Syst Man Cybern Part B (Cybern) 34(1):34–39

    Google Scholar 

Download references

Acknowledgements

The author (Chi ZHANG) appreciates the financial support of China Scholarship Council during his study at Kyoto University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qing-wu Gong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Gong, Q. & Koyamada, K. Visual analytics and prediction system based on deep belief networks for icing monitoring data of overhead power transmission lines. J Vis (2020). https://doi.org/10.1007/s12650-020-00670-x

Download citation

Keywords

  • Icing thickness
  • Visualization
  • Deep belief network
  • Power transmission line