Skip to main content

Unsteady skin-friction field estimation based on global luminescent oil-film image analysis


A global luminescent oil-film (GLOF) image analysis method to estimate unsteady skin-friction fields in an unsteady flow field is proposed and demonstrated. A governing equation describing the dynamics of the oil film (the thin-oil-film equation) is employed for the unsteady oil-film images. The frequency response of the oil-film movement is analyzed, and a cutoff frequency is defined as a function of the oil-film thickness and the kinematic oil viscosity. The estimating skin-friction vector is defined along with a spatiotemporal weighted window and obtained by solving the overdetermined system of the thin-oil-film equation. The system can be solved by using the weighted linear least-squares method, and the time-resolved skin-friction field can be estimated. The time-resolved GLOF image analysis method is demonstrated on an experiment of a junction flow on a flat surface with a square cylinder. The GLOF images in the Kármán vortex shedding bounding the flat surface were acquired, and the time-resolved skin-friction fields were obtained. The results showed that fluctuation in the skin-friction vectors corresponds to the shedding frequency, and the vortices bounding the surface were extracted. The averaged skin-friction field is compared with the result of the previous study based on the time-independent model. The normalized skin friction from both methods showed good agreement, which indicates that the quantitative value will be obtained when a calibration process is involved in a future study.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


Download references


The present study was supported in part by JSPS KAKENHI Grant Number 19H00800 and JST Presto Grant Number JPMJPR1678.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Taku Nonomura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, T., Lee, C., Nonomura, T. et al. Unsteady skin-friction field estimation based on global luminescent oil-film image analysis. J Vis 23, 763–772 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: