RankBrushers: interactive analysis of temporal ranking ensembles

Abstract

Temporal ranking ensembles indicate time-evolving multivariate rankings. Such data can be commonly found in our daily life, for example, different rankings of universities (QS, ARWU, THE, and USNews) over year and those of NBA players over season. Effective analysis and tracking of rankings allow users to gain insights into the overall ranking change over time and seek the explanation for the change. This paper introduces a novel visual analytics approach for characterizing and visualizing the uncertainty, dynamics, and differences of ranking ensemble data. A novel visual design is proposed to characterize the evolution pattern, distribution, and uncertainty of a large number of temporal ranking ensembles. The evolutionary ranking ensembles are progressively explored, tracked, and compared by means of an intuitive visualization system. Two case studies and a task-driven user study conducted on real datasets demonstrate the effectiveness and feasibility of the implemented system.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Batty M (2006) Rank clocks. Nature 444(7119):592–596

    Article  Google Scholar 

  2. Botchen RP, Weiskopf D, Ertl T (2006) Interactive visualization of uncertainty in flow fields using texture-based techniques. In: 12th international symposium on flow visualisation, pp 4051–4056

  3. Ceneda D, Gschwandtner T, May T, Miksch S, Schulz H-J, Streit M, Tominski C (2017) Characterizing guidance in visual analytics. IEEE Trans Vis Comput Graph 1:111–120

    Article  Google Scholar 

  4. Chen H, Zhang S, Chen W, Mei H, Zhang J, Mercer A, Liang R, Qu H (2015) Uncertainty-aware multidimensional ensemble data visualization and exploration. IEEE Trans Vis Comput. Graph 21(9):1072–1086

    Article  Google Scholar 

  5. Chen S, Wang Z, Liang J, Yuan X (2018) Uncertainty-aware visual analytics for exploring human behaviors from heterogeneous spatial temporal data. J Vis Lang Comput 48:187–198

    Article  Google Scholar 

  6. Chen W, Guo F, Han D, Pan J, Nie X, Xia J, Zhang X (2019a) Structure-based suggestive exploration: a new approach for effective exploration of large networks. IEEE Trans Vis Comput Graph 25(1):555–565

    Article  Google Scholar 

  7. Chen S, Andrienko N, Andrienko G, Adilova L, Barlet J, Kindermann J, Nguyen PH, Thonnard O, Turkay C (2019b) LDA ensembles for interactive exploration and categorization of behaviors. IEEE Trans Vis Comput Graph. https://doi.org/10.1109/TVCG.2019.2904069

    Article  Google Scholar 

  8. Demir I, Dick C, Westermann R (2014) Multi-charts for comparative 3D ensemble visualization. IEEE Trans Vis Comput Graph 20(12):2694–2703

    Article  Google Scholar 

  9. Dinesha V, Adabala N, Natarajan V (2012) Uncertainty visualization using HDR volume rendering. Vis Comput 28(3):265–278

    Article  Google Scholar 

  10. Fua Y, Ward MO, Rundensteiner EA (1999) Hierarchical parallel coordinates for exploration of large datasets. In: IEEE visualization 1999, Proceedings, 24–29 October 1999. San Francisco, CA, USA, pp 43–50

  11. Gansner ER, Hu Y, North S, Scheidegger C (2011) Multilevel agglomerative edge bundling for visualizing large graphs. In: 2011 IEEE pacific visualization symposium (PacificVis). IEEE, pp 187–194

  12. Gousie MB, Grady J, Branagan M (2013) Visualizing trends and clusters in ranked time-series data. In: IS&T/SPIE electronic imaging. International Society for Optics and Photonics, pp 90170F–90170F

  13. Gratzl S, Lex A, Gehlenborg N, Pfister H, Streit M (2013) Lineup: visual analysis of multi-attribute rankings. IEEE Trans Vis Comput Graph 19(12):2277–2286

    Article  Google Scholar 

  14. Grigoryan G, Rheingans P (2004) Point-based probabilistic surfaces to show surface uncertainty. IEEE Trans Vis Comput Graph 10(5):564–573

    Article  Google Scholar 

  15. Guo H, Liu H, Li R, Wu C, Guo Y, Xu M (2018) Margin & diversity based ordering ensemble pruning. Neurocomputing 275:237–246. https://doi.org/10.1016/j.neucom.2017.06.052

    Article  Google Scholar 

  16. Heinrich J, Weiskopf D (2013) State of the art of parallel coordinates. In: Eurographics (STARs), pp 95–116

  17. Heinrich J, Bachthaler S, Weiskopf D (2011) Progressive splatting of continuous scatterplots and parallel coordinates. Comput Graph Forum 30(3):653–662

    Article  Google Scholar 

  18. Hlawatsch M, Leube P, Nowak W, Weiskopf D (2011) Flow radar glyphs—static visualization of unsteady flow with uncertainty. IEEE Trans Vis Comput Graph 17(12):1949–1958

    Article  Google Scholar 

  19. Huang Z, Lu Y, Mack E, Chen W, Maciejewski R (2019) Exploring the sensitivity of choropleths under attribute uncertainty. IEEE Trans Vis Comput Graph. https://doi.org/10.1109/TVCG.2019.2892483

    Article  Google Scholar 

  20. Kidwell P, Lebanon G, Cleveland W (2008) Visualizing incomplete and partially ranked data. IEEE Trans Vis Comput Graph 14(6):1356–1363. https://doi.org/10.1109/TVCG.2008.181

    Article  Google Scholar 

  21. Lee CH, Varshney A (2002) Representing thermal vibrations and uncertainty in molecular surfaces. In: Electronic Imaging 2002. International Society for Optics and Photonics, pp 80–90

  22. Lu M, Wang Z, Yuan X (2015) Trajrank: exploring travel behaviour on a route by trajectory ranking. In: 2015 IEEE pacific visualization symposium (PacificVis). IEEE, pp 311–318

  23. Ma Y, Lin T, Cao Z, Li C, Wang F, Chen W (2016) Mobility viewer: an eulerian approach for studying urban crowd flow. IEEE Trans Intell Transp Syst 17(9):2627–2636

    Article  Google Scholar 

  24. Ma Y, Chen W, Ma X, Xu J, Huang X, Maciejewski R, Tung AKH (2017a) EasySVM: a visual analysis approach for open-box support vector machines. Comput Vis Media 3(2):161–175

    Article  Google Scholar 

  25. Ma Y, Xu J, Wu X, Wang F, Chen W (2017b) A visual analytical approach for transfer learning in classification. Inf Sci 390:54–69

    Article  Google Scholar 

  26. Ma Y, Tung AKH, Wang W, Gao X, Pan Z, Chen W (2018) Scatternet: a deep subjective similarity model for visual analysis of scatterplots. IEEE Trans Vis Comput Graph. https://doi.org/10.1109/TVCG.2018.2875702

    Article  Google Scholar 

  27. Müller M (2007) Dynamic time warping. In: Information retrieval for music and motion, pp 69-84

  28. Pothkow K, Hege H-C (2011) Positional uncertainty of isocontours: condition analysis and probabilistic measures. IEEE Trans Vis Comput Graph 17(10):1393–1406

    Article  Google Scholar 

  29. Potter K, Wilson A, Bremer P-T, Williams D, Doutriaux C, Pascucci V, Johnson CR (2009) Ensemble-vis: a framework for the statistical visualization of ensemble data. In: IEEE international conference on data mining workshops, 2009. ICDMW’09. IEEE, pp 233–240

  30. Potter K, Kniss J, Riesenfeld R, Johnson CR (2010) Visualizing summary statistics and uncertainty. In: Computer graphics forum, vol 29. Wiley, Hoboken, pp 823–832

    Article  Google Scholar 

  31. Riehmann P, Hanfler M, Froehlich B (2005) Interactive sankey diagrams. In: Proceedings of the IEEE symposium on information visualization, p 31

  32. Riveiro M (2007) Evaluation of uncertainty visualization techniques for information fusion. In: 2007 10th international conference on information fusion. IEEE, pp 1–8

  33. Roberts RC, Laramee RS, Smith GA, Brookes P, D’Cruze T (2019) Smart brushing for parallel coordinates. IEEE Trans Vis Comput Graph 25(3):1575–1590

    Article  Google Scholar 

  34. Schmidt GS, Chen S-L, Bryden AN, Livingston MA, Rosenblum LJ, Osborn BR (2004) Multidimensional visual representations for underwater environmental uncertainty. IEEE Comput Graph Appl 24(5):56–65

    Article  Google Scholar 

  35. Seipp K, Gutiérrez F, Ochoa X, Verbert K (2019) Towards a visual guide for communicating uncertainty in visual analytics. J Comput Lang 50:1–18

    Article  Google Scholar 

  36. Seo J, Shneiderman B (2005) A rank-by-feature framework for interactive exploration of multidimensional data. Inf Vis 4(2):96–113

    Article  Google Scholar 

  37. Shi C, Cui W, Liu S, Xu P, Chen W, Qu H (2012) Rankexplorer: visualization of ranking changes in large time series data. IEEE Trans Vis Comput Graph 18(12):2669–2678

    Article  Google Scholar 

  38. Sun M, Lebanon G, Collins-Thompson K (2010) Visualizing differences in web search algorithms using the expected weighted hoeffding distance. In: Proceedings of the 19th international conference on World wide web. ACM, pp 931–940

  39. Wang X-M, Zhang T-Y, Ma Y-X, Xia J, Chen W (2016) A survey of visual analytic pipelines. J Comput Sci Technol 31(4):787–804

    Article  Google Scholar 

  40. Wei J, Shen Z, Sundaresan N, Ma K-L (2012) Visual cluster exploration of web clickstream data. In: 2012 IEEE conference on visual analytics science and technology (VAST). IEEE, pp 3–12

  41. Weng D, Chen R, Deng Z, Wu F, Chen J, Wu Y (2018) SRVis: towards better spatial integration in ranking visualization. IEEE Trans Vis Comput Graph 25(1):459–469. https://doi.org/10.1109/TVCG.2018.2865126

    Article  Google Scholar 

  42. Wilson AT, Potter KC (2009) Toward visual analysis of ensemble data sets. In: Proceedings of the workshop on ultrascale visualization. ACM, pp 48–53

  43. Wittenbrink CM, Pang AT, Lodha SK (1996) Glyphs for visualizing uncertainty in vector fields. IEEE Trans Vis Comput Graph 2(3):266–279

    Article  Google Scholar 

  44. Xia J, Hou Y, Chen YV, Qian ZC, Ebert DS, Chen W (2017) Visualizing rank time series of wikipedia top-viewed pages. IEEE Comput Graph Appl 37(2):42–53

    Article  Google Scholar 

  45. Xu K, Xia M, Mu X, Wang Y, Cao N (2019) Ensemblelens: ensemble-based visual exploration of anomaly detection algorithms with multidimensional data. IEEE Trans Vis Comput Graph 25(1):109–119

    Article  Google Scholar 

  46. Yue X, Shu X, Zhu X, Du X, Yu Z, Papadopoulos D, Liu S (2019) Bitextract: interactive visualization for extracting bitcoin exchange intelligence. IEEE Trans Vis Comput Graph 25(1):162–171

    Article  Google Scholar 

  47. Zappa M, Rotach MW, Arpagaus M, Dorninger M, Hegg C, Montani A, Ranzi R, Ament F, Germann U, Grossi G et al (2008) MAP D-PHASE: real-time demonstration of hydrological ensemble prediction systems. Atmos Sci Lett 9(2):80–87

    Article  Google Scholar 

  48. Zehner B, Watanabe N, Kolditz O (2010) Visualization of gridded scalar data with uncertainty in geosciences. Comput Geosci 36(10):1268–1275

    Article  Google Scholar 

  49. Zhao Y, Luo F, Chen M, Wang Y, Xia J, Zhou F, Wang Y, Chen Y, Chen W (2019) Evaluating multi-dimensional visualizations for understanding fuzzy clusters. IEEE Trans Vis Comput Graph 25(1):12–21

    Article  Google Scholar 

  50. Zhou H, Yuan X, Qu H, Cui W, Chen B (2008) Visual clustering in parallel coordinates. Comput Graph Forum 27(3):1047–1054

    Article  Google Scholar 

  51. Zhou Z, Ye Z, Liu Y, Liu F, Tao Y, Su W (2017) Visual analytics for spatial clusters of air-quality data. IEEE Comput Graph Appl 37(5):98–105

    Article  Google Scholar 

  52. Zhou F, Lin X, Liu C, Zhao Y, Xu P, Ren L, Xue T, Ren L (2019a) A survey of visualization for smart manufacturing. J Vis 22(2):419–435

    Article  Google Scholar 

  53. Zhou Z, Meng L, Tang C, Zhao Y, Guo Z, Hu M, Chen W (2019b) Visual abstraction of large scale geospatial origin-destination movement data. IEEE Trans Vis Comput Graph 25(1):43–53

    Article  Google Scholar 

Download references

Acknowledgements

This research supported by National Key Research and Development Program (2018YFB0904503) and National Natural Science Foundation of China (U1866602, 61772456, 61761136020).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, D., Pan, J., Guo, F. et al. RankBrushers: interactive analysis of temporal ranking ensembles. J Vis 22, 1241–1255 (2019). https://doi.org/10.1007/s12650-019-00598-x

Download citation

Keywords

  • Visualization
  • Temporal ranking ensembles
  • Uncertainty