Skip to main content

Recent research advances on interactive machine learning

Abstract

Interactive machine learning (IML) is an iterative learning process that tightly couples a human with a machine learner, which is widely used by researchers and practitioners to effectively solve a wide variety of real-world application problems. Although recent years have witnessed the proliferation of IML in the field of visual analytics, most recent surveys either focus on a specific area of IML or aim to summarize a visualization field that is too generic for IML. In this paper, we systematically review the recent literature on IML and classify them into a task-oriented taxonomy built by us. We conclude the survey with a discussion of open challenges and research opportunities that we believe are inspiring for future work in IML.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alexander E, Gleicher M (2016) Task-driven comparison of topic models. IEEE Trans Vis Comput Graph 22(1):320–329

    Google Scholar 

  2. Andrienko G, Andrienko N, Fuchs G, Garcia JMC (2018) Clustering trajectories by relevant parts for air traffic analysis. IEEE Trans Vis Comput Graph 24(1):34–44

    Google Scholar 

  3. Badam SK, Elmqvist N, Fekete JD (2017) Steering the craft: UI elements and visualizations for supporting progressive visual analytics. Comput Graph Forum 36(3):491–502

    Google Scholar 

  4. Barbosa A, Paulovich FV, Paiva A, Goldenstein S, Petronetto F, Nonato LG (2016) Visualizing and interacting with kernelized data. IEEE Trans Vis Comput Graph 22(3):1314–1325

    Google Scholar 

  5. Behrisch M, Bach B, Hund M, Delz M, Von Rüden L, Fekete JD, Schreck T (2017) Magnostics: image-based search of interesting matrix views for guided network exploration. IEEE Trans Vis Comput Graph 23(1):31–40

    Google Scholar 

  6. Berger M, McDonough K, Seversky LM (2017) cite2vec: citation-driven document exploration via word embeddings. IEEE Trans Vis Comput Graph 23(1):691–700

    Google Scholar 

  7. Bernard J, Hutter M, Zeppelzauer M, Fellner D, Sedlmair M (2018) Comparing visual-interactive labeling with active learning: an experimental study. IEEE Trans Vis Comput Graph 24(1):298–308

    Google Scholar 

  8. Bilal A, Jourabloo A, Ye M, Liu X, Ren L (2018) Do convolutional neural networks learn class hierarchy? IEEE Trans Vis Comput Graph 24(1):152–162

    Google Scholar 

  9. Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. JMLR 3(Jan):993–1022

    MATH  Google Scholar 

  10. Bögl M, Filzmoser P, Gschwandtner T, Lammarsch T, Leite RA, Miksch S, Rind A (2017) Cycle plot revisited: multivariate outlier detection using a distance-based abstraction. Comput Graph Forum 36(3):227–238

    Google Scholar 

  11. Brooks M, Amershi S, Lee B, Drucker SM, Kapoor A, Simard P (2015) FeatureInsight: visual support for error-driven feature ideation in text classification. In: IEEE VAST, pp 105–112

  12. Bryan C, Wu X, Mniszewski S, Ma KL (2015) Integrating predictive analytics into a spatiotemporal epidemic simulation. IEEE VAST:17–24

    Google Scholar 

  13. Buchmüller J, Janetzko H, Andrienko G, Andrienko N, Fuchs G, Keim DA (2015) Visual analytics for exploring local impact of air traffic. Comput Graph Forum 34(3):181–190

    Google Scholar 

  14. Cao N, Shi C, Lin S, Lu J, Lin YR, Lin CY (2016) TargetVue: visual analysis of anomalous user behaviors in online communication systems. IEEE Trans Vis Comput Graph 22(1):280–289

    Google Scholar 

  15. Cao N, Lin C, Zhu Q, Lin YR, Teng X, Wen X (2018) Voila: visual anomaly detection and monitoring with streaming spatiotemporal data. IEEE Trans Vis Comput Graph 24(1):23–33

    Google Scholar 

  16. Chen J, Zhu J, Wang Z, Zheng X, Zhang B (2013) Scalable inference for logistic-normal topic models. In: NIPS, pp 2445–2453

  17. Chen S, Yuan X, Wang Z, Guo C, Liang J, Wang Z, Zhang XL, Zhang J (2016) Interactive visual discovering of movement patterns from sparsely sampled geo-tagged social media data. IEEE Trans Vis Comput Graph 22(1):270–279

    Google Scholar 

  18. Chen Y, Xu P, Ren L (2018) Sequence synopsis: optimize visual summary of temporal event data. IEEE Trans Vis Comput Graph 24(1):45–55

    Google Scholar 

  19. Cheng S, Mueller K (2016) The data context map: fusing data and attributes into a unified display. IEEE Trans Vis Comput Graph 22(1):121–130

    Google Scholar 

  20. Cho I, Wesslen R, Volkova S, Ribarsky W, Dou W (2017) CrystalBall—a visual analytic system for future event discovery and analysis from social media data. In: IEEE VAST

  21. Choo J, Liu S (2018) Visual analytics for explainable deep learning. IEEE Comput Graph Appl 38(4):84–92

    Google Scholar 

  22. Di Lorenzo G, Sbodio M, Calabrese F, Berlingerio M, Pinelli F, Nair R (2016) AllAboard: visual exploration of cellphone mobility data to optimise public transport. IEEE Trans Vis Comput Graph 22(2):1036–1050

    Google Scholar 

  23. Dou W, Liu S (2016) Topic-and time-oriented visual text analysis. IEEE Comput Graph Appl 36(4):8–13

    Google Scholar 

  24. Dou W, Cho I, ElTayeby O, Choo J, Wang X, Ribarsky W (2015) DemographicVis: analyzing demographic information based on user generated content. In: IEEE VAST, pp 57–64

  25. Duan Y, Chen Z, Wei F, Zhou M, Shum HY (2012) Twitter topic summarization by ranking tweets using social influence and content quality. In: COLING, pp 763–780

  26. El-Assady M, Gold V, Acevedo C, Collins C, Keim D (2016) ConToVi: multi-party conversation exploration using topic-space views. Comput Graph Forum 35(3):431–440

    Google Scholar 

  27. El-Assady M, Sevastjanova R, Gipp B, Keim D, Collins C (2017) NEREx: named-entity relationship exploration in multi-party conversations. Comput Graph Forum 36(3):213–225

    Google Scholar 

  28. El-Assady M, Sevastjanova R, Sperrle F, Keim D, Collins C (2018) Progressive learning of topic modeling parameters: a visual analytics framework. IEEE Trans Vis Comput Graph 24(1):382–391

    Google Scholar 

  29. Endert A, Ribarsky W, Turkay C, Wong B, Nabney I, Blanco ID, Rossi F (2017) The state of the art in integrating machine learning into visual analytics. Comput Graph Forum 36(8):458–486

    Google Scholar 

  30. Fails JA, Olsen Jr DR (2003) Interactive machine learning. In: ACM IUI, pp 39–45

  31. Gad S, Javed W, Ghani S, Elmqvist N, Ewing T, Hampton KN, Ramakrishnan N (2015) ThemeDelta: dynamic segmentations over temporal topic models. IEEE Trans Vis Comput Graph 21(5):672–685

    Google Scholar 

  32. Glueck M, Naeini MP, Doshi-Velez F, Chevalier F, Khan A, Wigdor D, Brudno M (2018) PhenoLines: phenotype comparison visualizations for disease subtyping via topic models. IEEE Trans Vis Comput Graph 24(1):371–381

    Google Scholar 

  33. Grünwald PD (2007) The minimum description length principle. MIT Press, Cambridge

    Google Scholar 

  34. Guo S, Xu K, Zhao R, Gotz D, Zha H, Cao N (2018) EventThread: visual summarization and stage analysis of event sequence data. IEEE Trans Vis Comput Graph 24(1):56–65

    Google Scholar 

  35. Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier, Amsterdam

    MATH  Google Scholar 

  36. Heimerl F, Han Q, Koch S, Ertl T (2016) CiteRivers: visual analytics of citation patterns. IEEE Trans Vis Comput Graph 22(1):190–199

    Google Scholar 

  37. Hohman FM, Kahng M, Pienta R, Chau DH (2018) Visual analytics in deep learning: an interrogative survey for the next frontiers. IEEE Trans Vis Comput Graph. https://doi.org/10.1109/TVCG.2018.2843369

    Google Scholar 

  38. Jäckle D, Fischer F, Schreck T, Keim DA (2016) Temporal MDS plots for analysis of multivariate data. IEEE Trans Vis Comput Graph 22(1):141–150

    Google Scholar 

  39. Jäckle D, Hund M, Behrisch M, Keim DA, Schreck T (2017) Pattern trails: visual analysis of pattern transitions in subspaces. In: IEEE VAST

  40. Jarema M, Demir I, Kehrer J, Westermann R (2015) Comparative visual analysis of vector field ensembles. IEEE VAST:81–88

    Google Scholar 

  41. Jiang X, Zhang J (2016) A text visualization method for cross-domain research topic mining. J Vis 19(3):561–576

    Google Scholar 

  42. Joachims T (2002) Optimizing search engines using clickthrough data. In: SIGKDD, pp 133–142

  43. Kahng M, Andrews PY, Kalro A, Chau DHP (2018) ActiVis: visual exploration of industry-scale deep neural network models. IEEE Trans Vis Comput Graph 24(1):88–97

    Google Scholar 

  44. Kim M, Kang K, Park D, Choo J, Elmqvist N (2017) TopicLens: efficient multi-level visual topic exploration of large-scale document collections. IEEE Trans Vis Comput Graph 23(1):151–160

    Google Scholar 

  45. Klemm P, Lawonn K, Glaßer S, Niemann U, Hegenscheid K, Völzke H, Preim B (2016) 3D regression heat map analysis of population study data. IEEE Trans Vis Comput Graph 22(1):81–90

    Google Scholar 

  46. Krause J, Dasgupta A, Swartz J, Aphinyanaphongs Y, Bertini E (2017) A workflow for visual diagnostics of binary classifiers using instance-level explanations. IEEE VAST

  47. Krueger R, Thom D, Ertl T (2015) Semantic enrichment of movement behavior with foursquare—a visual analytics approach. IEEE Trans Vis Comput Graph 21(8):903–915

    Google Scholar 

  48. Kumpf A, Tost B, Baumgart M, Riemer M, Westermann R, Rautenhaus M (2018) Visualizing confidence in cluster-based ensemble weather forecast analyses. IEEE Trans Vis Comput Graph 24(1):109–119

    Google Scholar 

  49. Kwon BC, Kim H, Wall E, Choo J, Park H, Endert A (2017) AxiSketcher: interactive nonlinear axis mapping of visualizations through user drawings. IEEE Trans Vis Comput Graph 23(1):221–230

    Google Scholar 

  50. Kwon BC, Eysenbach B, Verma J, Ng K, De Filippi C, Stewart WF, Perer A (2018) Clustervision: visual supervision of unsupervised clustering. IEEE Trans Vis Comput Graph 24(1):142–151

    Google Scholar 

  51. Lei H, Xia J, Guo F, Zou Y, Chen W, Liu Z (2016) Visual exploration of latent ranking evolutions in time series. J Vis 19(4):783–795

    Google Scholar 

  52. Leite RA, Gschwandtner T, Miksch S, Kriglstein S, Pohl M, Gstrein E, Kuntner J (2018) EVA: visual analytics to identify fraudulent events. IEEE Trans Vis Comput Graph 24(1):330–339

    Google Scholar 

  53. Liang Y, Wang X, Zhang SH, Hu SM, Liu S (2017) PhotoRecomposer: interactive photo recomposition by cropping. IEEE Trans Vis Comput Graph 24(10):2728–2742

    Google Scholar 

  54. Lin H, Gao S, Gotz D, Du F, He J, Cao N (2018) RCLens: interactive rare category exploration and identification. IEEE Trans Vis Comput Graph 24:2223–2237. https://doi.org/10.1109/TVCG.2017.2711030

    Google Scholar 

  55. Liu S, Cui W, Wu Y, Liu M (2014) A survey on information visualization: recent advances and challenges. Vis Comput 30(12):1373–1393

    Google Scholar 

  56. Liu S, Wang B, Thiagarajan JJ, Bremer PT, Pascucci V (2015) Visual exploration of high-dimensional data through subspace analysis and dynamic projections. Comput Graph Forum 34(3):271–280

    Google Scholar 

  57. Liu M, Liu S, Zhu X, Liao Q, Wei F, Pan S (2016a) An uncertainty-aware approach for exploratory microblog retrieval. IEEE Trans Vis Comput Graph 22(1):250–259

    Google Scholar 

  58. Liu S, Bremer PT, Jayaraman J, Wang B, Summa B, Pascucci V (2016b) The Grassmannian Atlas: a general framework for exploring linear projections of high-dimensional data. Comput Graph Forum 35(3):1–10

    Google Scholar 

  59. Liu S, Yin J, Wang X, Cui W, Cao K, Pei J (2016c) Online visual analytics of text streams. IEEE Trans Vis Comput Graph 22(11):2451–2466

    Google Scholar 

  60. Liu M, Jiang L, Liu J, Wang X, Zhu J, Liu S (2017a) Improving learning-from-crowds through expert validation. In: IJCAI, pp 2329–2336

  61. Liu M, Shi J, Li Z, Li C, Zhu J, Liu S (2017b) Towards better analysis of deep convolutional neural networks. IEEE Trans Vis Comput Graph 23(1):91–100

    Google Scholar 

  62. Liu S, Wang X, Liu M, Zhu J (2017c) Towards better analysis of machine learning models: a visual analytics perspective. Vis Inf 1(1):48–56

    Google Scholar 

  63. Liu Z, Kerr B, Dontcheva M, Grover J, Hoffman M, Wilson A (2017d) CoreFlow: extracting and visualizing branching patterns from event sequences. Comput Graph Forum 36(3):527–538

    Google Scholar 

  64. Liu Z, Wang Y, Dontcheva M, Hoffman M, Walker S, Wilson A (2017e) Patterns and sequences: interactive exploration of clickstreams to understand common visitor paths. IEEE Trans Vis Comput Graph 23(1):321–330

    Google Scholar 

  65. Liu M, Liu S, Su H, Cao K, Zhu J (2018a) Analyzing the noise robustness of deep neural networks. In: IEEE VAST

  66. Liu M, Shi J, Cao K, Zhu J, Liu S (2018b) Analyzing the training processes of deep generative models. IEEE Trans Vis Comput Graph 24(1):77–87

    Google Scholar 

  67. Liu S, Bremer PT, Thiagarajan JJ, Srikumar V, Wang B, Livnat Y, Pascucci V (2018c) Visual exploration of semantic relationships in neural word embeddings. IEEE Trans Vis Comput Graph 24(1):553–562

    Google Scholar 

  68. Liu S, Chen C, Lu Y, Ouyang F, Wang B (2018d) An interactive method to improve crowdsourced annotations. IEEE Trans Vis Comput Graph. https://doi.org/10.1109/TVCG.2018.2864843

    Google Scholar 

  69. Liu S, Wang X, Collins C, Dou W, Ouyang F, El-Assady M, Jiang L, Keim D (2018e) Bridging text visualization and mining: a task-driven survey. IEEE Trans Vis Comput Graph. https://doi.org/10.1109/TVCG.2018.2834341

    Google Scholar 

  70. Liu S, Xiao J, Liu J, Wang X, Wu J, Zhu J (2018f) Visual diagnosis of tree boosting methods. IEEE Trans Vis Comput Graph 24(1):163–173

    Google Scholar 

  71. Löwe T, Förster EC, Albuquerque G, Kreiss JP, Magnor M (2016) Visual analytics for development and evaluation of order selection criteria for autoregressive processes. IEEE Trans Vis Comput Graph 22(1):151–159

    Google Scholar 

  72. Lu M, Liang J, Wang Z, Yuan X (2016) Exploring OD patterns of interested region based on taxi trajectories. J Vis 19(4):811–821

    Google Scholar 

  73. Lu M, Chen S, Lai C, Lin L, Yuan X (2017a) Frontier of information visualization and visual analytics in 2016. J Vis 20(4):667–686

    Google Scholar 

  74. Lu Y, Garcia R, Hansen B, Gleicher M, Maciejewski R (2017b) The state-of-the-art in predictive visual analytics. Comput Graph Forum 36(3):539–562

    Google Scholar 

  75. Lu Y, Wang H, Landis S, Maciejewski R (2018) A visual analytics framework for identifying topic drivers in media events. IEEE Trans Vis Comput Graph. 24(9):2501–2515

    Google Scholar 

  76. Ming Y, Cao S, Zhang R, Li Z, Chen Y, Song Y, Qu H (2017) Understanding hidden memories of recurrent neural networks. In: IEEE VAST

  77. Mühlbacher T, Linhardt L, Möller T, Piringer H (2018) TreePOD: sensitivity-aware selection of Pareto-optimal decision trees. IEEE Trans Vis Comput Graph 24(1):174–183

    Google Scholar 

  78. Onoue Y, Koyamada K (2017) Quasi-biclique edge concentration: a visual analytics method for biclustering. In: IEEE PacificVis, pp 215–219

  79. Paiva JGS, Schwartz WR, Pedrini H, Minghim R (2015) An approach to supporting incremental visual data classification. IEEE Trans Vis Comput Graph 21(1):4–17

    Google Scholar 

  80. Pajer S, Streit M, Torsney-Weir T, Spechtenhauser F, Möller T, Piringer H (2017) WeightLifter: visual weight space exploration for multi-criteria decision making. IEEE Trans Vis Comput Graph 23(1):611–620

    Google Scholar 

  81. Park D, Kim S, Lee J, Choo J, Diakopoulos N, Elmqvist N (2018) ConceptVector: text visual analytics via interactive lexicon building using word embedding. IEEE Trans Vis Comput Graph 24(1):361–370

    Google Scholar 

  82. Pezzotti N, Höllt T, Lelieveldt B, Eisemann E, Vilanova A (2016) Hierarchical stochastic neighbor embedding. Comput Graph Forum 35(3):21–30

    Google Scholar 

  83. Pezzotti N, Lelieveldt BP, van der Maaten L, Höllt T, Eisemann E, Vilanova A (2017) Approximated and user steerable tSNE for progressive visual analytics. IEEE Trans Vis Comput Graph 23(7):1739–1752

    Google Scholar 

  84. Pezzotti N, Höllt T, Van Gemert J, Lelieveldt BP, Eisemann E, Vilanova A (2018) DeepEyes: progressive visual analytics for designing deep neural networks. IEEE Trans Vis Comput Graph 24(1):98–108

    Google Scholar 

  85. Poco J, Doraiswamy H, Vo H, Comba JL, Freire J, Silva C et al (2015) Exploring traffic dynamics in urban environments using vector-valued functions. Comput Graph Forum 34(3):161–170

    Google Scholar 

  86. Pu Y, Gan Z, Henao R, Yuan X, Li C, Stevens A, Carin L (2016) Variational autoencoder for deep learning of images, labels and captions. In: NIPS, pp 2352–2360

  87. Purwantiningsih O, Sallaberry A, Andary S, Seilles A, Azé J (2016) Visual analysis of body movement in serious games for healthcare. In: IEEE PacificVis, pp 229–233

  88. Raidou RG, Casares-Magaz O, Muren L, Van der Heide UA, Rørvik J, Breeuwer M, Vilanova A (2016) Visual analysis of tumor control models for prediction of radiotherapy response. Comput Graph Forum 35(3):231–240

    Google Scholar 

  89. Rauber PE, Fadel SG, Falcao AX, Telea AC (2017) Visualizing the hidden activity of artificial neural networks. IEEE Trans Vis Comput Graph 23(1):101–110

    Google Scholar 

  90. Ren D, Amershi S, Lee B, Suh J, Williams JD (2017) Squares: supporting interactive performance analysis for multiclass classifiers. IEEE Trans Vis Comput Graph 23(1):61–70

    Google Scholar 

  91. Rieck B, Leitte H (2016) Exploring and comparing clusterings of multivariate data sets using persistent homology. Comput Graph Forum 35(3):81–90

    Google Scholar 

  92. Röhlig M, Luboschik M, Krüger F, Kirste T, Schumann H, Bögl M, Alsallakh B, Miksch S (2015) Supporting activity recognition by visual analytics. In: IEEE VAST, pp 41–48

  93. Sacha D, Zhang L, Sedlmair M, Lee JA, Peltonen J, Weiskopf D, North SC, Keim DA (2017) Visual interaction with dimensionality reduction: a structured literature analysis. IEEE Trans Vis Comput Graph 23(1):241–250

    Google Scholar 

  94. Sacha D, Kraus M, Bernard J, Behrisch M, Schreck T, Asano Y, Keim DA (2018) SOMFlow: guided exploratory cluster analysis with self-organizing maps and analytic provenance. IEEE Trans Vis Comput Graph 24(1):120–130

    Google Scholar 

  95. Shao L, Mahajan A, Schreck T, Lehmann DJ (2017) Interactive regression lens for exploring scatter plots. Comput Graph Forum 36(3):157–166

    Google Scholar 

  96. Stahnke J, Dörk M, Müller B, Thom A (2016) Probing projections: interaction techniques for interpreting arrangements and errors of dimensionality reductions. IEEE Trans Vis Comput Graph 22(1):629–638

    Google Scholar 

  97. Strobelt H, Gehrmann S, Pfister H, Rush AM (2018) LSTMVis: a tool for visual analysis of hidden state dynamics in recurrent neural networks. IEEE Trans Vis Comput Graph 24(1):667–676

    Google Scholar 

  98. Sun M, Mi P, North C, Ramakrishnan N (2016) BiSet: semantic edge bundling with biclusters for sensemaking. IEEE Trans Vis Comput Graph 22(1):310–319

    Google Scholar 

  99. Thom D, Krüger R, Ertl T, Bechstedt U, Platz A, Zisgen J, Volland B (2015) Can twitter really save your life? A case study of visual social media analytics for situation awareness. In: IEEE PacificVis, pp 183–190

  100. Turkay C, Kaya E, Balcisoy S, Hauser H (2017) Designing progressive and interactive analytics processes for high-dimensional data analysis. IEEE Trans Vis Comput Graph 23(1):131–140

    Google Scholar 

  101. Verma J, Luo H, Hu J, Zhang P (2017) DrugPathSeeker: interactive UI for exploring drug-ADR relation via pathways. In: IEEE PacificVis, pp 260–264

  102. Wall E, Das S, Chawla R, Kalidindi B, Brown ET, Endert A (2018) Podium: ranking data using mixed-initiative visual analytics. IEEE Trans Vis Comput Graph 24(1):288–297

    Google Scholar 

  103. Wang J, Mueller K (2016) The visual causality analyst: an interactive interface for causal reasoning. IEEE Trans Vis Comput Graph 22(1):230–239

    Google Scholar 

  104. Wang B, Mueller K (2018) The subspace voyager: exploring high-dimensional data along a continuum of salient 3D subspaces. IEEE Trans Vis Comput Graph 24(2):1204–1222

    Google Scholar 

  105. Wang X, Liu S, Chen Y, Peng TQ, Su J, Yang J, Guo B (2016a) How ideas flow across multiple social groups. In: IEEE VAST, pp 51–60

  106. Wang X, Liu S, Liu J, Chen J, Zhu J, Guo B (2016b) TopicPanorama: a full picture of relevant topics. IEEE Trans Vis Comput Graph 22(12):2508–2521

    Google Scholar 

  107. Wang Y, Li J, Nie F, Theisel H, Gong M, Lehmann DJ (2017) Linear discriminative star coordinates for exploring class and cluster separation of high dimensional data. Comput Graph Forum 36(3):401–410

    Google Scholar 

  108. Wang J, Gou L, Yang H, Shen HW (2018) GANViz: a visual analytics approach to understand the adversarial game. IEEE Trans Vis Comput Graph 24(6):1905–1917

    Google Scholar 

  109. Watanabe K, Wu HY, Niibe Y, Takahashi S, Fujishiro I (2015) Biclustering multivariate data for correlated subspace mining. IEEE PacificVis:287–294

    Google Scholar 

  110. Wei F, Li W, Liu S (2010) irank: a rank-learn-combine framework for unsupervised ensemble ranking. J Am Soc Inf Sci Technol 61(6):1232–1243

    Google Scholar 

  111. Wen L, Wang J, van der Aalst WM, Huang B, Sun J (2010) Mining process models with prime invisible tasks. Data Knowl Eng 69(10):999–1021

    Google Scholar 

  112. Wilkinson L (2018) Visualizing big data outliers through distributed aggregation. IEEE Trans Vis Comput Graph 24(1):256–266

    Google Scholar 

  113. Wongsuphasawat K, Smilkov D, Wexler J, Wilson J, Mané D, Fritz D, Krishnan D, Viégas FB, Wattenberg M (2018) Visualizing dataflow graphs of deep learning models in Tensorflow. IEEE Trans Vis Comput Graph 24(1):1–12

    Google Scholar 

  114. Wu Y, Wu W, Yang S, Yan Y, Qu H (2015) Interactive visual summary of major communities in a large network. IEEE PacificVis:47–54

    Google Scholar 

  115. Wu Y, Cao N, Gotz D, Tan YP, Keim DA (2016) A survey on visual analytics of social media data. IEEE Trans Multimed 18(11):2135–2148

    Google Scholar 

  116. Wu HY, Niibe Y, Watanabe K, Takahashi S, Uemura M, Fujishiro I (2017a) Making many-to-many parallel coordinate plots scalable by asymmetric biclustering. In: IEEE PacificVis, pp 305–309

  117. Wu W, Zheng Y, Cao N, Zeng H, Ni B, Qu H, Ni LM (2017b) MobiSeg: interactive region segmentation using heterogeneous mobility data. In: IEEE PacificVis, pp 91–100

  118. Wu Y, Chen Z, Sun G, Xie X, Cao N, Liu S, Cui W (2017c) StreamExplorer: a multi-stage system for visually exploring events in social streams. IEEE Trans Vis Comput Graph 24(10):2758–2772

    Google Scholar 

  119. Wu H, Jia S, Wang J, Zhang J (2018) M3: visual exploration of spatial relationships between flight trajectories. J Vis 21(3):457–470

    Google Scholar 

  120. Xia J, Ye F, Chen W, Wang Y, Chen W, Ma Y, Tung AK (2018) LDSScanner: exploratory analysis of low-dimensional structures in high-dimensional datasets. IEEE Trans Vis Comput Graph 24(1):236–245

    Google Scholar 

  121. Xie C, Zhong W, Mueller K (2017) A visual analytics approach for categorical joint distribution reconstruction from marginal projections. IEEE Trans Vis Comput Graph 23(1):51–60

    Google Scholar 

  122. Xu P, Cao N, Qu H, Stasko J (2016) Interactive visual co-cluster analysis of bipartite graphs. In: IEEE PacificVis, pp 32–39

  123. Xu P, Mei H, Ren L, Chen W (2017) ViDX: visual diagnostics of assembly line performance in smart factories. IEEE Trans Vis Comput Graph 23(1):291–300

    Google Scholar 

  124. Xu J, Tao Y, Yan Y, Lin H (2018) VAUT: a visual analytics system of spatiotemporal urban topics in reviews. J Vis 21(3):471–484

    Google Scholar 

  125. Yan Y, Tao Y, Xu J, Ren S, Lin H (2018) Visual analytics of bike-sharing data based on tensor factorization. J Vis 21(3):495–509

    Google Scholar 

  126. Yu L, Wu W, Li X, Li G, Ng WS, Ng SK, Huang Z, Arunan A, Watt HM (2015) iVizTRANS: interactive visual learning for home and work place detection from massive public transportation data. IEEE VAST:49–56

    Google Scholar 

  127. Zhang Z, McDonnell KT, Zadok E, Mueller K (2015) Visual correlation analysis of numerical and categorical data on the correlation map. IEEE Trans Vis Comput Graph 21(2):289–303

    Google Scholar 

  128. Zhang C, Yang J, Zhan FB, Gong X, Brender JD, Langlois PH, Barlowe S, Zhao Y (2016a) A visual analytics approach to high-dimensional logistic regression modeling and its application to an environmental health study. In: IEEE PacificVis, pp 136–143

  129. Zhang Y, Luo W, Mack EA, Maciejewski R (2016b) Visualizing the impact of geographical variations on multivariate clustering. Comput Graph Forum 35(3):101–110

    Google Scholar 

  130. Zhao J, Sun M, Chen F, Chiu P (2018) BiDots: visual exploration of weighted biclusters. IEEE Trans Vis Comput Graph 24(1):195–204

    Google Scholar 

  131. Zhou F, Li J, Huang W, Zhao Y, Yuan X, Liang X, Shi Y (2016) Dimension reconstruction for visual exploration of subspace clusters in high-dimensional data. IEEE PacificVis:128–135

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shixia Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Liu, S. & Chen, C. Recent research advances on interactive machine learning. J Vis 22, 401–417 (2019). https://doi.org/10.1007/s12650-018-0531-1

Download citation

Keywords

  • Interactive visualization
  • Machine learning
  • Interactive machine learning