Skip to main content
Log in

Adjoint-enhanced flow visualization

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

This work presents a novel method of visually capturing the relative importance of different flow regions with respect to a quantity of interest. Existing flow visualization techniques are enhanced to convey flow importance. This is accomplished by filtering their output with additional information obtained from the adjoint counterpart of the physical flow field. The additional adjoint data is of equal resolution to the physical flow field. The adjoint flow data links physical fluid regions to user chosen quantities of interest. Thus, regions that are less relevant to the quantity of interest can be masked or deemphasized to reduce clutter and to highlight the behavior of the more important flow regions. The concept is demonstrated on a series of fluid simulations. The visualizations highlight the temporally changing importance of flow features, regions of influence in complex flows, and occlusion reduction in 3D flows. The method is also demonstrated by checking the impact of perturbations introduced in flow regions that were found to be both important and unimportant based on the adjoint data.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Chan Y, Correa CD, Ma K (2013) The generalized sensitivity scatterplot. IEEE TVCG 19(10):1768–1781

    Google Scholar 

  • Chan Y, Correa C, Ma K (2010) Flow-based scatterplots for sensitivity analysis. In: Visual analytics science and technology (VAST), 2010 IEEE Symposium on, pp 43–50

  • Chaudhuri A, Lee TY, Shen HW, Wenger R (2014) Exploring flow fields using space-filling analysis of streamlines. IEEE TVCG 20(10):1392–1404

    Google Scholar 

  • Chen M, Ebert D, Hagen H, Laramee RS, van Liere R, Ma K, Ribarsky W, Scheuermann G, Silver D (2009) Data, information, and knowledge in visualization. IEEE Comput Graph Appl 29(1):12–19

    Article  Google Scholar 

  • Correa C, Crnovrsanin T, Ma K (2012) Visual reasoning about social networks using centrality sensitivity. IEEE TVCG 18(1):106–120

    Google Scholar 

  • Demir I, Kehrer J, Westermann R (2016) Screen-space silhouettes for visualizing ensembles of 3D isosurfaces. In: IEEE Pacific Visualization Symposium, pp 204–208

  • Doleisch H (2007) Simvis: interactive visual analysis of large and time-dependent 3D simulation data. Simul Conf 2007(Winter):712–720

    Google Scholar 

  • Giles MB, Pierce NA (2000) An introduction to the adjoint approach to design. Flow Turbul Combust 65(3–4):393–415

    Article  MATH  Google Scholar 

  • Günther T, Rössl C, Theisel H (2013) Opacity optimization for 3D line fields. ACM Trans Graph 32(4):1:201–1:208

    Article  MATH  Google Scholar 

  • Guo Z, Ward MO, Rundensteiner EA, Ruiz C (2011) Pointwise local pattern exploration for sensitivity analysis. In: Visual analytics science and technology (VAST), 2011 IEEE conference on, pp 131–140

  • Koehler C, Wischgoll T, Dong H, Gaston Z (2011) Vortex visualization in ultra low reynolds number insect flight. IEEE TVCG 17(12):2071–2079

    Google Scholar 

  • Laramee R, Hauser H, Doleisch H, Vrolijk B, Post F, Weiskopf D (2004) The state of the art in flow visualization: dense and texture-based techniques. Comput Graph Forum 23:2004

    Article  Google Scholar 

  • Li L, Shen H (2007) Image based streamline generation and rendering. IEEE TVCG 13(3):630–640

    Google Scholar 

  • Li L, Hsieh H, Shen H (2008)Illustrative streamline placement and visualization. In: IEEE Pacific visualization symposium, pp 79–86

  • Ma J, Wang C, Shene C, Jiang J (2014) A graph-based interface for visual analytics of 3D streamlines and pathlines. IEEE TVCG 20(8):1127–1140

    Google Scholar 

  • Marchesin S, Chen C, Ho C, Ma K (2010) View-dependent streamlines for 3D vector fields. IEEE TVCG 16(6):1578–1586

    Google Scholar 

  • Marta AC, Shankaran S, Wang Q, Venugopal P (2013) Interpretation of adjoint solutions for turbomachinery flows. AIAA J 51(7):1733–1744

    Article  Google Scholar 

  • Martins J, Hwang J (2012) Review and unification of methods for computing derivatives of multidisciplinary computational models. AIAA J 51(11):2582–2599

    Article  Google Scholar 

  • Matvienko V, Krüger J (2013) A metric for the evaluation of dense vector field visualizations. IEEE TVCG 19(7):1122–1132

    Google Scholar 

  • Mavriplis DJ (2007) Discrete adjoint-based approach for optimization problems on three-dimensional unstructured meshes. AIAA J 45(4):741–750

    Article  Google Scholar 

  • Ma J, Wang C, Shene CK (2013) Coherent view-dependent streamline selection for importance-driven flow visualization. Proc. SPIE 8654(865):407–865, 407–15

  • McLoughlin T, Laramee RS, Peikert R, Post FH, Chen M (2010) Over two decades of integration-based, geometric flow visualization. Comput Graph Forum 29(6):1807–1829

    Article  Google Scholar 

  • McNamara A, Treuille A, Popović Z, Stam J (2004) Fluid control using the adjoint method. ACM Trans Graph 23(3):449–456

    Article  Google Scholar 

  • Muigg P, Kehrer J, Oeltze S, Piringer H, Doleisch H, Preim B, Hauser H (2008) A four-level focus+context approach to interactive visual analysis of temporal features in large scientific data. Comput Graph Forum:775–782

  • Nemec M, Aftosmis M, Wintzer M (2008) Adjoint-based adaptive mesh refinement for complex geometries. In: 46th AIAA aerospace sciences meeting and exhibit, aerospace sciences meetings. American Institute of Aeronautics and Astronautics, pp 1–23

  • Nielsen EJ, Diskin B (2013) Discrete adjoint-based design for unsteady turbulent flows on dynamic overset unstructured grids. AIAA J 51(6):1355–1373

    Article  Google Scholar 

  • Ozer S, Silver D, Bemis K, Martin P (2014) Activity detection in scientific visualization. IEEE TVCG 20(3):377–390

    Google Scholar 

  • Schlemmer M, Hotz I, Hamann B, Morr F, Hagen H (2007)Priority streamlines: a context-based visualization of flow fields. In: EuroVis, pp 227–234

  • Shi K, Theisel H, Hauser H, Weinkauf T, Matkovic K, Hege HC, Seidel HP (2009) Path line attributes—an information visualization approach to analyzing the dynamic behavior of 3D time-dependent flow fields. In: Topology-based methods in visualization II, mathematics and visualization, pp 75–88

  • Stegmaier S, Rist U, Ertl T (2005) Opening the can of worms: an exploration tool for vortical flows. In: IEEE visualization. IEEE Computer Society, Los Alamitos, CA, USA, pp 463–470

  • Stompel A, Lum E, Ma KL (2002) Feature-enhanced visualization of multidimensional, multivariate volume data using non-photorealistic rendering techniques. In: Pacific Graphics conference

  • Tao J, Wang C, Shene C, Kim SH (2014) A deformation framework for focus+context flow visualization. IEEE TVCG 20(1):42–55

    Google Scholar 

  • Theisel H, Weinkauf T, Hege HC, Seidel HP (2003) Saddle connectors—an approach to visualizing the topological skeleton of complex 3D vector fields. In: IEEE visualization, pp 225–232

  • Tricoche X, Scheuermann G, Hagen H (2000) A topology simplification method for 2D vector fields. In: IEEE visualization, pp 359–366

  • Vanella M, Rabenold P, Balaras E (2010) A direct-forcing embedded-boundary method with adaptive mesh refinement for fluid–structure interaction problems. J Comput Phys 229(18):6427–6449

    Article  MathSciNet  MATH  Google Scholar 

  • Verma V, Kao D, Pang A (2000) A flow-guided streamline seeding strategy. In: IEEE visualization, pp 163–170

  • Viola I, Feixas M, Sbert M, Groller ME (2006) Importance-driven focus of attention. IEEE TVCG 12(5):933–940

    Google Scholar 

  • Viola I, Kanitsar A, Groller ME (2004) Importance-driven volume rendering. In: IEEE visualization, pp 139–145

  • Wang Q (2013) Forward and adjoint sensitivity computation of chaotic dynamical systems. J Comput Phys 235:1

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Q, Gao JH (2013) The drag-adjoint field of a circular cylinder wake at reynolds numbers 20, 100 and 500. J Fluid Mech 730:145–161

    Article  MathSciNet  MATH  Google Scholar 

  • Wang C, Yu H, Ma KL (2008) Importance-driven time-varying data visualization. IEEE TVCG 14(6):1547–1554

    Google Scholar 

  • Yang Z, Sarkar P, Hu H (2012) Visualization of the tip vortices in a wind turbine wake. J Vis 15(1):39–44

    Article  Google Scholar 

Download references

Acknowledgements

The early portion of this work was supported by the Air Force Office of Scientific Research under Laboratory Task 09RB01COR (monitored by Dr. Doug Smith).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Koehler.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koehler, C., Durscher, R., Beran, P. et al. Adjoint-enhanced flow visualization. J Vis 21, 819–834 (2018). https://doi.org/10.1007/s12650-018-0490-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-018-0490-6

Keywords

Navigation