Journal of Visualization

, Volume 20, Issue 2, pp 349–358 | Cite as

Quantitative visualization of swirl and cloud bubbles in Taylor–Couette flow

  • Bruno van Ruymbeke
  • Yuichi Murai
  • Yuji Tasaka
  • Yoshihiko Oishi
  • Céline Gabillet
  • Catherine Colin
  • Noureddine Latrache
Regular Paper

Abstract

We develop a novel method to study the gas phase features in a bubbly Taylor–Couette flow when bubbles are arranged as elevated toroidal strings. The flow is recorded in the front view plane with a high-speed camera for a Reynolds number of 1500 and a global void fraction of 0.14 %. An image processing algorithm is developed to discriminate bubbles accumulated in clouds near the inner cylinder (cloud bubbles) from bubbles trapped in the bulk flow by vortices (swirl bubbles). The analysis of the preferential positions, azimuthal velocities, and equivalent void fraction of clouds and swirl bubbles separately provides a new insight into the dynamics of the bubble’s entrapment.

Graphical Abstract

Keywords

Bubbly Taylor–Couette Flow visualization Algorithm Discrimination 

References

  1. Cheng W, Murai Y, Sasaki T, Yamamoto F (2005) Bubble velocity measurement with recursive cross correlation PIV technique. Flow Meas Instr 16:35–46CrossRefGoogle Scholar
  2. Chouippe A, Climent E, Legendre D, Gabillet C (2014) Numerical simulation of bubble dispersion in turbulent Taylor-Couette flow. Phys Fluids Am Inst Phys 26(4):043304:1–22Google Scholar
  3. Climent E, Simmonnet M, Magnaudet J (2007) Preferencial accumulation of bubbles in Couette-Taylor flow patterns. Phys Fluids 19:083301CrossRefMATHGoogle Scholar
  4. Fokoua GN, Gabillet C, Aubert A, Colin C (2015) Effect of bubbles arrangement on the viscous torque in bubbly Taylor-Couette flow. Phys Fluids 27:034105-1–034105-34Google Scholar
  5. Gao X, Kong B, Vigil RD (2015) CFD investigation of bubble effects on Taylor–Couette flow patterns in the weakly turbulent vortex regime. Chem Eng J 270:508–518CrossRefGoogle Scholar
  6. Kumagai I, Takahashi Y, Murai Y (2015) Power-saving device for air bubble generation using a hydrofoil to reduce ship drag: theory, experiments, and application to ships. Ocean Eng 95:183–194CrossRefGoogle Scholar
  7. Mehel A, Gabillet G, Djeridi H (2006) Bubble effect on the structures of weakly turbulent Couette Taylor flow. J Fluids Eng 128(4). doi:10.1115/1.2201641
  8. Mei R, Klausner J, Lawrence C (1994) A note on the history force on a spherical bubble at finite Reynolds number. Phys Fluids 6:418–420CrossRefMATHGoogle Scholar
  9. Murai Y, Matsumoro Y, Yamamoto F (2001) Three dimensional measurement of void fraction in a bubble plume using statistic stereoscopic image processing. Exp Fluids 30:11–21CrossRefGoogle Scholar
  10. Murai Y, Matsumoto Y, Yamamoto F (2000) Qualitative and quantitative flow visualization of bubble motions in a plane bubble plume. J Vis 3:27–35CrossRefGoogle Scholar
  11. Murai Y, Oiwa H, Takeda Y (2008) Frictional drag reduction in bubbly Couette–Taylor flow. Phys Fluids 20:034101CrossRefMATHGoogle Scholar
  12. Oppenheim A, Schafer RW, Buck JR (1989) Discrete-time signal processing. Prentice-Hall, Englewood Cliffs, pp 311–312Google Scholar
  13. Otsu N (1979) Threshold selection method from Gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66MathSciNetCrossRefGoogle Scholar
  14. Shiomi Y, Kutsuna H, Akagawa K, Ozawa M (1993) Two-phase flow in an annulus with a rotating inner cylinder (flow pattern in bubbly flow region). Nuc Eng Des 141(1E):27–34CrossRefGoogle Scholar
  15. Spandan V, Ostilla-Mnico R, Verzicco R, Lohse D (2016) Drag reduction in numerical two-phase Taylor Couette turbulence using an Euler Lagrange approach. J Fluid Mech 798:411–435MathSciNetCrossRefGoogle Scholar
  16. Sugiyama K, Calzavarini E, Lohse D (2008) Microbubbly drag reduction in Taylor–Couette flow in the wavy vortex regime. J Fluid Mech 608:21–24CrossRefMATHGoogle Scholar
  17. Van Gils DPM, Guzman DN, Sun C (2013) The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor-Couette flow. J Fluid Mech 722:317–347CrossRefMATHGoogle Scholar
  18. Van den Berg TH, Luther S, Lathrop DP, Lohse D (2005) Drag reduction in Bubbly Taylor-Couette turbulence. Phys Rev Lett 94:044501CrossRefGoogle Scholar
  19. Watamura T, Tasaka Y, Murai Y (2013) Intensified and attenuated waves in a microbubble Taylor-Couette flow. Phys Fluids 25:054107CrossRefGoogle Scholar
  20. Yoshida K, Tasaka Y, Murai Y, Takeda T (2009) Mode transition in bubbly Taylor-Couette flow measured by PTV. J Phys Conf Ser 147:012013CrossRefGoogle Scholar

Copyright information

© The Visualization Society of Japan 2016

Authors and Affiliations

  1. 1.IRENav, EA3634-French Naval AcademyBrestFrance
  2. 2.Graduate School of EngineeringHokkaido UniversitySapporoJapan
  3. 3.IMFT, UMR 5502 CNRS/INP-ENSEEIHT/UPSToulouseFrance
  4. 4.Université de Brest, UBL, FRE CNRS 3744 IRDLBrestFrance

Personalised recommendations