Advertisement

Journal of Visualization

, Volume 20, Issue 1, pp 13–15 | Cite as

Visualization of hydrodynamic pilot-wave phenomena

  • Daniel M. Harris
  • Julio Quintela
  • Victor Prost
  • P.-T. Brun
  • John W. M. Bush
Short Paper

Abstract

Keywords

Imaging Scenery Acceleration Amplitude Hydrodynamical System Bath Surface Critical Acceleration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Funding was provided by National Science Foundation (Grant Nos. CBET-0966452, CMMI-1333242) and MIT-France Program.

Supplementary material

12650_2016_383_MOESM1_ESM.avi (19.4 mb)
Supplementary material 1 (avi 19910 KB)
12650_2016_383_MOESM2_ESM.mp4 (46.1 mb)
Supplementary material 2 (mp4 47256 KB)
12650_2016_383_MOESM3_ESM.mp4 (138.4 mb)
Supplementary material 3 (mp4 141750 KB)
12650_2016_383_MOESM4_ESM.avi (4 mb)
Supplementary material 4 (avi 4119 KB)
12650_2016_383_MOESM5_ESM.mp4 (26.4 mb)
Supplementary material 5 (mp4 27069 KB)
12650_2016_383_MOESM6_ESM.pdf (4.7 mb)
Supplementary material 6 (PDF 4782 KB)

References

  1. Bush JWM (2015a) The new wave of pilot-wave theory. Phys Today 68(8):47–53CrossRefGoogle Scholar
  2. Bush JWM (2015b) Pilot-wave hydrodynamics. Ann Rev Fluid Mech 47:269–292CrossRefGoogle Scholar
  3. Couder Y, Protiere S, Fort E, Boudaoud A (2005) Dynamical phenomena: walking and orbiting droplets. Nature 437(7056):208–208CrossRefGoogle Scholar
  4. Eddi A, Terwagne D, Fort E, Couder Y (2008) Wave propelled ratchets and drifting rafts. Europhys Lett 82(4):44001CrossRefGoogle Scholar
  5. Eddi A, Decelle A, Fort E, Couder Y (2009) Archimedean lattices in the bound states of wave interacting particles. Europhys Lett 87(5):56002CrossRefGoogle Scholar
  6. Faraday M (1831) On the forms and states assumed by fluids in contact with vibrating elastic surfaces. Philos Trans R Soc London 121(319):1831Google Scholar
  7. Moisy F, Rabaud M, Salsac K (2009) A synthetic Schlieren method for the measurement of the topography of a liquid interface. Exp Fluids 46(6):1021–1036CrossRefGoogle Scholar
  8. Protiere S, Bohn S, Couder Y (2008) Exotic orbits of two interacting wave sources. Phys Rev E 78(3):036204CrossRefGoogle Scholar
  9. Terwagne D, Bush JWM (2011) Tibetan singing bowls. Nonlinearity 24(8):R51–R66MathSciNetCrossRefMATHGoogle Scholar
  10. Walker J (1978) Drops of liquid can be made to float on the liquid. Sci Am 238:151–158CrossRefGoogle Scholar

Copyright information

© The Visualization Society of Japan 2016

Authors and Affiliations

  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations