Skip to main content
Log in

Magnetic resonance imaging of flow and mass transfer in electrohydrodynamic liquid bridges

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

Abstract

Here, we report on the feasibility and use of magnetic resonance imaging-based methods to the study of electrohydrodynamic (EHD) liquid bridges. High-speed tomographic recordings through the longitudinal axis of water bridges were used to characterize the mass transfer dynamics, mixing, and flow structure. By filling one beaker with heavy water and the other with light water, it was possible to track the spread of the proton signal throughout the total liquid volume. The mixing kinetics are different depending on where the light nuclei are located and proceeds faster when the anolyte is light water. Distinct flow and mixing regions are identified in the fluid volumes, and it is shown that the EHD flow at the electrodes can be counteracted by the density difference between water isotopes. MR phase contrast imaging reveals that within the bridge section, two separate counter-propagating flows pass one above the other in the bridge.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Benson MJ, Elkins CJ, Mobley PD, Alley MT, Eaton JK (2009) Three-dimensional concentration field measurements in a mixing layer using magnetic resonance imaging. Exp Fluids 49:43–55. doi:10.1007/s00348-009-0763-x

    Article  Google Scholar 

  • Bernstein MA, King KF, Zhou XJ (2004) Handbook of MRI pulse sequences. Elsevier, Amsterdam

    Google Scholar 

  • Burcham CL, Saville DA (2002) Electrohydrodynamic stability: Taylor–Melcher theory for a liquid bridge suspended in a dielectric gas. J Fluid Mech 452:163–187. doi:10.1017/S0022112001006784

    Article  MATH  Google Scholar 

  • Engel A, Friedrichs R (2002) On the electromagnetic force on a polarizable body. Am J Phys 70:428. doi:10.1119/1.1432971

    Article  Google Scholar 

  • Fuchs EC, Woisetschläger J, Gatterer K, Maier E, Pecnik R, Holler G, Eisenkölbl H (2007) The floating water bridge. J Phys D Appl Phys 40:6112–6114. doi:10.1088/0022-3727/40/19/052

    Article  Google Scholar 

  • Fuchs EC, Gatterer K, Holler G, Woisetschläger J (2008) Dynamics of the floating water bridge. J Phys D Appl Phys 41:185502. doi:10.1088/0022-3727/41/18/185502

    Article  Google Scholar 

  • Fuchs EC, Bitschnau B, Di Fonzo S, Gessini A, Woisetschläger Bencivenga F (2011) Inelastic UV scattering in a floating water bridge. J Phys Sci Appl 1:135–147

    Google Scholar 

  • Graessner J (2013) Bandwidth in MRI? MAGNETOM Flash, 2:3–8. http://www.siemens.com/magnetom-world

  • Grundmann S, Wassermann F, Lorenz R, Jung B, Tropea C (2012) Experimental investigation of helical structures in swirling flows. Int J Heat Fluid Flow 37:51–63. doi:10.1016/j.ijheatfluidflow.2012.05.003

    Article  Google Scholar 

  • Haacke EM, Brown RW, Thompson MR, Venkatesan R (1999) Magnetic resonance imaging—physical principles and sequence design. Wiley, New York

    Google Scholar 

  • Marín AG, Lohse D (2010) Building water bridges in air: electrohydrodynamics of the floating water bridge. Phys Fluids 22:122104. doi:10.1063/1.3518463

    Article  Google Scholar 

  • Melcher JR, Taylor GI (1969) Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu Rev Fluid Mech 1:111–146. doi:10.1146/annurev.fl.01.010169.000551

    Article  Google Scholar 

  • Morawetz K (2012) Theory of water and charged liquid bridges. Phys Rev E Stat Nonlinear Soft Matter Phys 86:1–9. doi:10.1103/PhysRevE.86.026302

    Google Scholar 

  • Narten A (1964) Thermodynamic effects of mixing light and heavy water. J Chem Phys 41:1318. doi:10.1063/1.1726066

    Article  Google Scholar 

  • Quesson B, de Zwart JA, Moonen CT (2000) Magnetic resonance temperature imaging for guidance of thermotherapy. J Magn Reson Imaging 12:525–533

    Article  Google Scholar 

  • Reike V, Pauly KB (2008) MR Thermometry. J Magn Res Imag 27:376–390. doi:10.1002/jmri.21265

    Article  Google Scholar 

  • Reiter U, Reiter G, Kovacs G, Stadler AF, Gulsun MA, Greiser A, Olschewski H, Fuchsjäger M (2013) Evaluation of elevated mean pulmonary arterial pressure based on magnetic resonance 4D velocity mapping: comparison of visualization techniques. PLoS One 8:e82212. doi:10.1371/journal.pone.0082212

    Article  Google Scholar 

  • Sammer M, Wexler A, Kuntke P, Wiltsche H, Stanulewicz N, Lankmayr E, Woisetschläger J, Fuchs EC (2015) Proton production, neutralisation and reduction in a floating water bridge. J Phys D Appl Phys 48:415501. doi:10.1088/0022-3727/48/41/415501

    Article  Google Scholar 

  • Smith JN, Flagan RC, Beauchamp JL (2002) Droplet evaporation and discharge dynamics in electrospray ionization. J Phys Chem A 106:9957–9967. doi:10.1021/jp025723e

    Article  Google Scholar 

  • Van De Meent JW, Sederman AJ, Gladden LF, Goldstein RE (2010) Measurement of cytoplasmic streaming in single plant cells by magnetic resonance velocimetry. J Fluid Mech 642:5. doi:10.1017/S0022112009992187

    Article  MATH  Google Scholar 

  • Wang F-N, Peng S-L, Lu C-T, Peng H-H, Yeh T-C (2013) Water signal attenuation by D2O infusion as a novel contrast mechanism for 1H perfusion MRI. NMR Biomed 26:692–698. doi:10.1002/nbm.2914

    Article  Google Scholar 

  • Wassermann F, Loosmann F, Egger H, Grundmann S, Tropea C (2014) Flow through tetradecahedrons. Paper presented at the 17th international symposium on applications of laser techniques to fluid mechanics Lisbon, Portugal, 07–10 July, 2014

  • Weishaupt D, Köchli VD, Marincek B (2008) How does MRI work?: an introduction to the physics and function of magnetic resonance imaging. Springer, Berlin

    Google Scholar 

  • Wexler AD, López Sáenz M, Schreer O, Woisetschläger J, Fuchs EC (2014) The preparation of electrohydrodynamic bridges from polar dielectric liquids. J Vis Exp. doi:10.3791/51819

    Google Scholar 

  • Wexler AD, Drusová S, Woisetschläger J, Fuchs EC (2016) Non-equilibrium thermodynamics and collective vibrational modes of liquid water in an inhomogeneous electric field. Phys Chem Chem Phys 18:16281. doi:10.1039/c5cp07218b

    Article  Google Scholar 

  • Widom A, Swain J, Silverberg J, Sivasubramanian S, Srivastava YN (2009) Theory of the Maxwell pressure tensor and the tension in a water bridge. Phys Rev E 80:016301. doi:10.1103/PhysRevE.80.016301

    Article  Google Scholar 

  • Woisetschläger J, Gatterer K, Fuchs EC (2010) Experiments in a floating water bridge. Exp Fluids 48:121–131. doi:10.1007/s00348-009-0718-2

    Article  Google Scholar 

  • Woisetschläger J, Wexler AD, Holler G, Eisenhut M, Gatterer K, Fuchs EC (2012) Horizontal bridges in polar dielectric liquids. Exp Fluids 52:193–205

    Article  Google Scholar 

Download references

Acknowledgments

This work was performed in the cooperation framework of Wetsus, European Center of Excellence for Sustainable Water Technology (http://www.wetsus.eu). Wetsus is co-funded by the Dutch Ministry of Economic Affairs and Ministry of Infrastructure and Environment, the Province of Fryslân, and the Northern Netherlands Provinces. ADW, SD, ECF, and JW wish to thank the participants of the research theme Applied Water Physics for the fruitful discussions and their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam D. Wexler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 37349 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wexler, A.D., Drusová, S., Fuchs, E.C. et al. Magnetic resonance imaging of flow and mass transfer in electrohydrodynamic liquid bridges. J Vis 20, 97–110 (2017). https://doi.org/10.1007/s12650-016-0379-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-016-0379-1

Keywords

Navigation