Journal of Visualization

, Volume 19, Issue 4, pp 643–651 | Cite as

Extraction of 3D vortex structures from a turbulent puff in a pipe using two-color illumination and flakes

  • Jumpei Ohkubo
  • Yuji Tasaka
  • Hyun Jin Park
  • Yuichi Murai
Regular Paper

Abstract

A novel visualization technique was proposed to extract the three-dimensional vortex structure of a turbulent puff, which is a local turbulence event that is observed in pipe flows at relatively low Reynolds numbers. The technique is based on multi-color illumination of microscopic flakes that are suspended in the flow, which makes structural visualization more informative than conventional monochrome approaches. A special optical arrangement of two laser sheets, colored green and blue, was established for the circular pipe. Based on an image analysis sequence, the internal structure of the puff is reconstructed as a cross-sectional temporal 3D image consisting of voxels with unicolor degrees between green and blue, where an individual single vortex is extracted as a pair of two-color stripes. This allows quantification of the azimuthal wavenumber of the vortical structure that characterizes the puff. The wavenumber results agreed well with the results of previous studies, thus supporting the applicability of the proposed visualization technique.

Graphical Abstract

Keywords

Pipe flow Turbulence transition Flow visualization Flake 

References

  1. Avila K, Moxey D, Lozar A, Avila M, Barkley D, Hof B (2011) The onset of turbulence in pipe flow. Science 333:192–196. doi:10.1126/science.1203223 CrossRefGoogle Scholar
  2. Bandyopadhyay PR (1986) Aspects of the equilibrium puff in transitional pipe flow. J Fluid Mech 163:439–458CrossRefGoogle Scholar
  3. Darbyshire AG, Mullin T (1995) Transition to turbulence in constant-mass-flux pipe flow. J Fluid Mech 289:83–114CrossRefGoogle Scholar
  4. Dominguez-Lerma MA, Ahlers G, Channell DS (1985) Effects of “Kalliroscope” flow visualization particles on rotating Couette–Taylor flow. Phys Fluids 28:1204–1206CrossRefGoogle Scholar
  5. Drazin PG (2002) Introduction to hydrodynamic stability. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
  6. Einarsson J, Candelier F, Lundell F, Angilella JR, Mehlig B (2015) Rotation of a spheroid in a simple shear at small Reynolds number. Phys Fluids 27:063301. doi:10.1063/1.4921543 CrossRefGoogle Scholar
  7. El Gamal A, Eltoukhy H (2005) CMOS image sensors: an introduction to the technology, design, and performance limits, presenting recent developments and future directions. IEEE Circuits Devices Mag 21:6–20. doi:10.1109/MCD.2005.1438751 CrossRefGoogle Scholar
  8. Faisst H, Eckhardt B (2003) Traveling waves in pipe flow. Phys Rev Lett 91:224502. doi:10.1103/PhysRevLett.91.224502 CrossRefGoogle Scholar
  9. Goto S, Kida S, Fujiwara S (2011) Flow visualization using reflective flakes. J Fluid Mech 683:417–429. doi:10.1017/jfm.2011.299 CrossRefMATHGoogle Scholar
  10. Hof B, Doorne C, Westerweel J, Nieuwstadt F, Faisst H, Eckhardt B, Wedin H, Kerswell R, Waleffe F (2004) Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science 305:1594–1597. doi:10.1126/science.1100393 CrossRefGoogle Scholar
  11. Hof B, Doorne C, Westerweel J, Nieuwstadt F (2005) Turbulent regeneration in pipe flow at moderate Reynolds numbers. Phys Rev Lett 95:214502. doi:10.1103/PhysRevLett.95.214502 CrossRefGoogle Scholar
  12. Hof B, Westerweel J, Schneider TM, Eckhardt B (2006) Finite lifetime of turbulence in shear flows. Nature 443:59–62. doi:10.1038/nature05089 CrossRefGoogle Scholar
  13. Park K, Grawford GL, Donnelly RJ (1981) Determination of transition in Couette flow in finite geometries. Phys Rev Lett 47:1448–1450CrossRefGoogle Scholar
  14. Park HJ, Tasaka Y, Murai Y, Oishi Y (2014) Vortical structures swept by a bubble swarm in turbulent boundary layers. Chem Eng Sci 116:486–496CrossRefGoogle Scholar
  15. Peixinho J, Mullin T (2006) Decay of turbulence in pipe flow. Phys Rev Lett 96:094501. doi:10.1103/PhysRevLett.96.094501 CrossRefGoogle Scholar
  16. Pfenniger W (1961) Transition in the inlet length of tubes at high Reynolds numbers. In: Lachman GV (ed) Boundary layer and flow control. Pergamon Press, New York, pp 970–980Google Scholar
  17. Reynolds O (1883) An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos Trans R Soc Lond 35:84–99MATHGoogle Scholar
  18. Samanta D, Lozar A, Hof B (2011) Experimental investigation of laminar turbulent intermittency in pipe flow. J Fluid Mech 681:193–204. doi:10.1017/jfm.2011.189 CrossRefMATHGoogle Scholar
  19. Shimizu M, Kida S (2009) A driving mechanism of a turbulent puff in pipe flow. Fluid Dyn Res 41:045501. doi:10.1088/0169-5983/41/4/045501 CrossRefMATHGoogle Scholar
  20. Tasaka Y, Schneider TM, Mullin T (2010) Folded edge of turbulence in a pipe. Phys Rev Lett 105:174502. doi:10.1103/PhysRevLett.105.174502 CrossRefGoogle Scholar
  21. Thoroddsen ST, Bauer JM (1999) Qualitative flow visualization using colored lights and reflective flakes. Phys Fluids 11:1702–1704CrossRefMATHGoogle Scholar
  22. Wignanski IJ, Champagne FH (1973) On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug. J Fluid Mech 59:281–335CrossRefGoogle Scholar

Copyright information

© The Visualization Society of Japan 2016

Authors and Affiliations

  • Jumpei Ohkubo
    • 1
  • Yuji Tasaka
    • 1
  • Hyun Jin Park
    • 1
  • Yuichi Murai
    • 1
  1. 1.Laboratory for Flow Control, Faculty of EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations