Advertisement

Journal of Visualization

, Volume 19, Issue 3, pp 423–436 | Cite as

An integral curve attribute based flow segmentation

  • Lei Zhang
  • Robert S. Laramee
  • David Thompson
  • Adrian Sescu
  • Guoning ChenEmail author
Regular Paper

Abstract

We propose a segmentation method for vector fields that employs the accumulated geometric and physical attributes along integral curves to classify their behavior. In particular, we assign to a given spatio-temporal position the attribute value associated with the integral curve initiated at that point. With this attribute information, our segmentation strategy first performs a region classification. Then, connected components are constructed from the derived classification to obtain an initial segmentation. After merging and filtering small segments, we extract and refine the boundaries of the segments. Because points that are correlated by the same integral curve have the same or similar attribute values, the proposed segmentation method naturally generates segments whose boundaries are better aligned with the flow direction. Therefore, additional processing is not required to generate other geometric descriptors within the segmented regions to illustrate the flow behaviors. We apply our method to a number of synthetic and CFD simulation data sets and compare their results with existing methods to demonstrate its effectiveness.

Graphical abstract

Keywords

Vector field data Integral curves Flow visualization Segmentation 

Notes

Acknowledgments

We thank Jackie Chen, Mathew Maltude, Tino Weinkauf for the data. This research was in part supported by NSF IIS-1352722 and IIS-1065107.

References

  1. Chen J-L, Bai Z, Hamann B, Ligocki TJ (2003) Normalized-cut algorithm for hierarchical vector field data segmentation. In: Electronic Imaging 2003. International Society for Optics and Photonics, pp 79–90Google Scholar
  2. Chen G, Mischaikow K, Laramee RS, Pilarczyk P, Zhang E (2007) Vector field editing and periodic orbit extraction using Morse decomposition. IEEE Trans Vis Comput Graph 13(4):769–785Google Scholar
  3. Chen G, Mischaikow K, Laramee RS, Zhang E (2008) Efficient Morse decompositions of vector fields. IEEE Trans Vis Comput Graph 14(4):848–862Google Scholar
  4. Edmunds M, Laramee RS, Chen G, Max N, Zhang E, Ware C (2012) Surface-based flow visualization. Comput Graph 36(8):974–990CrossRefGoogle Scholar
  5. Garth C, Wiebel A, Tricoche X, Joy KI, Scheuermann G (2008) Lagrangian visualization of flow-embedded surface structures. Comput Graph Forum 27(3):1007–1014CrossRefGoogle Scholar
  6. Gonzalez RC (2009) Digital image processing. Pearson Education IndiaGoogle Scholar
  7. Guan M, Zhang W, Zheng N, Liu Z (2014) A feature-emphasized clustering method for 2d vector field. In: proceeding of IEEE international conference on systems, man and cybernetics (SMC). IEEE, pp 729–733Google Scholar
  8. Haller G (2001) Lagrangian coherent structures and the rate of strain in two-dimensional turbulence. Phys Fluids A 13:3365–3385MathSciNetCrossRefzbMATHGoogle Scholar
  9. Heckel B, Weber G, Hamann B, Joy KI (1999) Construction of vector field hierarchies. In: Proceedings of the conference on visualization’99. IEEE Computer Society Press, pp 19–25Google Scholar
  10. Helman JL, Hesselink L (1989) Representation and display of vector field topology in fluid flow data sets. IEEE Comput 22(8):27–36Google Scholar
  11. Jiang M, Machiraju R, Thompson D (2005) Detection and visualization of vortices. In: The visualization handbook. Academic Press, pp 295–309Google Scholar
  12. Kuhn A, Lehmann DJ, Gasteiger R, Neugebauer M, Preim B, Theisel H (2011) A clustering-based visualization technique to emphasize meaningful regions of vector fields. In: VMV, pp 191–198Google Scholar
  13. Kundu P, Cohen I,Fluid mechanics.(2004) Elsevier Academic Press, San Diego). Two-and three-dimensional self-sustained flow oscillations 307(471–476):2008Google Scholar
  14. Laramee R, Hauser H, Zhao L, Post FH (2007) Topology based flow visualization: the state of the art. In: Topology-based methods in visualization (Proceedings of Topo-in-Vis 2005), mathematics and visualization. Springer, pp 1–19Google Scholar
  15. Lekien F, Shadden S, Marsden J (2007) Lagrangian coherent structures in n-dimensional systems. J Math Phys 48(6):Art. No. 065404Google Scholar
  16. Li H, Chen W, Shen I-F (2006) Segmentation of discrete vector fields. IEEE Trans Vis Comput Graph 12(3):289–300MathSciNetCrossRefGoogle Scholar
  17. Lu K, Chaudhuri A, Lee T-Y, Shen HW, Wong PC (2013) Exploring vector fields with distribution-based streamline analysis. In: Proceeding of IEEE pacific visualization symposium, SydneyGoogle Scholar
  18. Matvienko V, Kruger J (2013) A metric for the evaluation of dense vector field visualizations. Vis Comput Graph IEEE Trans 19(7):1122–1132CrossRefGoogle Scholar
  19. McKenzie A, Lombeyda SV, Desbrun M (2005) Vector field analysis and visualization through variational clustering. In: Proceedings of the Seventh Joint Eurographics / IEEE VGTC conference on Visualization, EUROVIS’05, Aire-la-Ville. Eurographics Association, pp 29–35Google Scholar
  20. McLoughlin T, Jones MW, Laramee RS, Malki R, Masters I, Hansen CD (2013) Similarity measures for enhancing interactive streamline seeding. IEEE Trans Vis Comput Graph 19(8):1342–1353CrossRefGoogle Scholar
  21. Peng Z, Grundy E, Laramee RS, Chen G, Croft N (2012) Mesh-driven vector field clustering and visualization: an image-based approach. IEEE Trans Vis Comput Graph 18(2):283–298Google Scholar
  22. Pobitzer A, Lez A, Matkovic K, Hauser H (2012) A statistics-based dimension reduction of the space of path line attributes for interactive visual flow analysis. In: PacificVis, pp 113–120Google Scholar
  23. Pobitzer A, Peikert R, Fuchs R, Schindler B, Kuhn A, Theisel H, Matkovic K, Hauser H (2011) The state of the art in topology-based visualization of unsteady flow. Comput Graph Forum 30(6):1789–1811Google Scholar
  24. Polthier K, Preuß E (2003) Identifying vector fields singularities using a discrete hodge decomposition. In: Hege HC, Polthier K (eds) Mathematical visualization III, pp 112–134Google Scholar
  25. Sadarjoen I, Post F (1999) Geometric methods for vortex extraction. In Proc EG/IEEE Visualization SymposiumGoogle Scholar
  26. Sadlo F, Peikert R (2007) Efficient visualization of lagrangian coherent structures by filtered amr ridge extraction. IEEE Trans Vis Comput Graph 13(6):1456–1463CrossRefGoogle Scholar
  27. Salzbrunn T, Garth C, Scheuermann G, Meyer J (2008) Pathline predicates and unsteady flow structures. Vis Comput 24(12):1039–1051CrossRefGoogle Scholar
  28. Salzbrunn T, Scheuermann G (2006) Streamline predicates. IEEE Trans Vis Comput Graph 12(6):1601–1612CrossRefzbMATHGoogle Scholar
  29. Salzbrunn T, Wischgoll T, Jänicke H, Scheuermann G (2008) The state of the art in flow visualization: partition-based techniques. In: Hauser H, Strassburger S, Theisel H (eds) Simulation and visualization proceedings. SCS Publishing House, pp 75–92Google Scholar
  30. Shadden S, Lekien F, Marsden J (2005) Definition and properties of lagrangian coherent structures from finite-time lyapunov exponents in two-dimensional aperiodic flows. Phys D 212(3–4):271–304MathSciNetCrossRefzbMATHGoogle Scholar
  31. Shi K, Theisel H, Hauser H, Weinkauf T, Matkovic K, Hege H-C, Seidel H-P (2009) Path line attributes—an information visualization approach to analyzing the dynamic behavior of 3D time-dependent flow fields. In: Hege H-C, Polthier K, Scheuermann G (eds) Topology-based methods in visualization II, Mathematics and visualization, Grimma. Springer, pp 75–88Google Scholar
  32. Skraba P, Wang B, Chen G, Rosen P (2014) 2d vector field simplification based on robustness. In: IEEE pacific visualization symposium, pp 49–56Google Scholar
  33. Telea A, van Wijk JJ (1999) Simplified representation of vector fields. In: Proceedings of the conference on Visualization’99. IEEE Computer Society Press, pp 35–42Google Scholar
  34. Theisel H, Weinkauf T, Seidel H-P (2004) Grid-independent detection of closed stream lines in 2D vector fields. In: Proceedings of the conference on vision, modeling and visualization 2004 (VMV 04), pp 421–428Google Scholar
  35. Tricoche X, Scheuermann G, Hagen H (2001) Continuous topology simplification of planar vector fields. Proc IEEE Vis 2001:159–166zbMATHGoogle Scholar
  36. Weinkauf T, Theisel H (2010) Streak lines as tangent curves of a derived vector field. IEEE Trans Vis Comput Graph 16(6):1225–1234Google Scholar
  37. Weiskopf D, Schafhitzel T, Ertl T (2007) Texture-based visualization of unsteady 3d flow by real-time advection and volumetric illumination. Vis Comput Graph IEEE Trans 13(3):569–582CrossRefGoogle Scholar
  38. Wischgoll T, Scheuermann G (2001) Detection and visualization of closed streamlines in planar fields. IEEE Trans Vis Comput Graph 7(2):165–172CrossRefGoogle Scholar
  39. Yu H, Wang C, Shene C-K, Chen JH (2012) Hierarchical streamline bundles. IEEE Trans Vis Comput Graph 18(8):1353–1367Google Scholar
  40. Zhang L, Laramee RS, Thompson D, Sescu A, Chen G (2015) Compute and visualize discontinuity among neighboring integral curves of 2D vector fields. In Proceedings of TopoInVis, GermanyGoogle Scholar

Copyright information

© The Visualization Society of Japan 2016

Authors and Affiliations

  • Lei Zhang
    • 1
  • Robert S. Laramee
    • 2
  • David Thompson
    • 3
  • Adrian Sescu
    • 3
  • Guoning Chen
    • 1
    Email author
  1. 1.University of HoustonHoustonUSA
  2. 2.Swansea UniversityWalesUK
  3. 3.Mississippi State UniversityMississippi StateUSA

Personalised recommendations