Skip to main content
Log in

Cellulose/Poly(Vinyl Alcohol)/Graphene Composite Photothermal Aerogel Membrane for Solar-driven Seawater Desalination

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Photothermal conversion at the water-air interface has been considered a promising route for steam generation, distillation and desalination. Due to the strong lattice vibration, high conductivity and substantial thermal stability, carbon materials, such as carbon nanotubes, graphene oxide and graphene, are considered promising photothermal materials for solar-driven water evaporation. However, most of the interfacial photothermal evaporators based on graphene are hydrophobic and often require complicated systems with multiple components. Herein, a 3D porous Cellulose/Poly(vinyl alcohol)/Graphene photothermal aerogel membrane that has distinctive properties, i.e., creditable hydrophilicity, broadband light absorbance and substantial thermal stability is fabricated by freeze-drying method. When the graphene content is 15 wt%, the light absorbance of the hybrid aerogel membrane is improved remarkably. Under the simulated solar irradiation (1 kW m− 2), the surface temperature of the wet aerogel is 48.6 °C, and the evaporation rate reaches 1.17 kg m− 2 h− 1, and the evaporation efficiency is 71.12%, benefit from the excellent photothermal conversion of graphene and the porous structure of the aerogel. Such all-in-one solar distillation and self-containing evaporation mode indicate the great potential of the cellulose aerogel membrane for practical solar-driven seawater desalination.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Available from the corresponding author on a reasonable request.

References

  1. Xing, C., Li, Z., Zhang, S., Bang, J., Xie, Z., Zhang, H., Peng, Z.: Phase inversion-based foam hydrogels for highly efficient solar-powered interfacial desalination. Chem. Eng. J. 464, 142409 (2023). https://doi.org/10.1016/j.cej.2023.142409

    Article  Google Scholar 

  2. Yang, L., Li, N., Guo, C., He, J., Wang, S., Qiao, L., Li, F., Yu, L., Wang, M., Xu, X.: Marine biomass-derived composite aerogels for efficient and durable solar-driven interfacial evaporation and desalination. Chem. Eng. J. 417, 128051 (2021). https://doi.org/10.1016/j.cej.2020.128051

    Article  Google Scholar 

  3. Chen, J., Jian, M., Yang, X., Xia, X., Pang, J., Qiu, R., Wu, S.: Highly effective multifunctional solar evaporator with scaffolding structured carbonized wood and biohydrogel. ACS Appl. Mater. Interfaces. 14, 46491–46501 (2022). https://doi.org/10.1021/acsami.2c11399

    Article  Google Scholar 

  4. Karen, W.M.J., Wang, Z., Liew, W.Y.H., Melvin, G.J.H.: Lowcost and sustainable carbonized sawdust based solar absorber for solar vapor generation towards seawater desalination. Waste Biomass Valori. 14, 3071–3080 (2023). https://doi.org/10.1007/s12649-023-02067-x

    Article  Google Scholar 

  5. Huang, Q., Liang, X., Yan, C., Liu, Y.: Review of interface solar-driven steam generation systems: High-efficiency strategies, applications and challenges. Appl. Energ. 283, 116361 (2021). https://doi.org/10.1016/j.apenergy.2020.116361

    Article  Google Scholar 

  6. Gong, S., Ding, Y., Li, X., Liu, S., Wu, H., Lu, X., Qu, J.: Novel flexible polyurethane/MXene composites with sensitive solar thermal energy storage behavior. Compos. Part. A-Appl S. 149, 106505 (2021). https://doi.org/10.1016/j.compositesa.2021.106505

    Article  Google Scholar 

  7. Storer, D.P., Phelps, J.L., Wu, X., Owens, G., Khan, N., Xu, H.: Graphene and rice-straw-fiber-based 3d photothermal aerogels for highly efficient solar evaporation. ACS Appl. Mater. Interfaces. 12, 15279–15287 (2020). https://doi.org/10.1021/acsami.0c01707

    Article  Google Scholar 

  8. Jin, Y., Wang, K., Li, S., Liu, J.: Encapsulation of MXene/polydopamine in nitrogen-doped 3D carbon networks with high photothermal conversion efficiency for seawater desalination. J. Colloid Interf Sci. 614, 345–354 (2022). https://doi.org/10.1016/j.jcis.2022.01.080

    Article  Google Scholar 

  9. Chen, C., Kuang, Y., Hu, L.: Challenges and opportunities for solar evaporation. Joule. 3, 683–718 (2019). https://doi.org/10.1016/j.joule.2018.12.023

    Article  Google Scholar 

  10. Xu, C., Pu, K.: Second near-infrared photothermal materials for combinational nanotheranostics. Chem. Soc. Rev. 50, 1111–1137 (2021). https://doi.org/10.1039/D0CS00664E

    Article  Google Scholar 

  11. Wu, X., Chen, G., Owens, G., Chu, D., Xu, H.: Photothermal materials: A key platform enabling highly efficient water evaporation driven by solar energy. Mater. Today Energy. 12, 277–296 (2019). https://doi.org/10.1016/j.mtener.2019.02.001

    Article  Google Scholar 

  12. Webb, J.A., Bardhan, R.: Emerging advances in nanomedicine with engineered gold nanostructures. Nanoscale. 6, 2502–2530 (2014). https://doi.org/10.1039/C3NR05112A

    Article  Google Scholar 

  13. Liu, C., Huang, J., Hsiung, S., Tian, Y., Wang, J., Han, Y., Fratalocchi, A.: High-performance large-scale solar steam generation with nanolayers of reusable biomimetic nanoparticles. Adv. Sustain. Syst. 1, 1–2 (2017). https://doi.org/10.1002/adsu.201600013

    Article  Google Scholar 

  14. Collavini, S., Cabrera-Espinoza, A., Delgado, J.: Organic polymers as additives in perovskite solar cells. Macromolecules. 54, 5451–5463 (2021). https://doi.org/10.1021/acs.macromol.1c00665

    Article  Google Scholar 

  15. Huang, W., Hu, G., Tian, C., Wang, X., Tu, J., Cao, Y., Zhang, K.: Nature-inspired salt resistant polypyrrole-wood for highly efficient solar steam generation. Sustain. Energ. Fuels. 3, 3000–3008 (2019). https://doi.org/10.1039/C9SE00163H

    Article  Google Scholar 

  16. Zhang, Y., Yin, X., Yu, B., Wang, X., Yang, J.: Recyclable polydopamine-functionalized sponge for high-efficiency clean water generation with dual-purpose solar evaporation and contaminant adsorption. ACS Appl. Mater. Interfaces. 11, 32559–32568 (2019). https://doi.org/10.1021/acsami.9b10076

    Article  Google Scholar 

  17. Xiao, Z., Huang, X., Zhao, K., Song, Q., Guo, R., Zhang, X., Zhou, S., Kong, D., Wanger, M., Mullen, K., Zhi, L.: Band structure engineering of schiff-base microporous organic polymers for enhanced visible‐light photocatalytic performance. Small. 15, 1900244 (2019). https://doi.org/10.1002/smll.201900244

    Article  Google Scholar 

  18. Liang, Y., Guo, J., Li, J., Mao, J., Xie, A., Zhu, L., Chen, S.: Robust and flexible 3D photothermal evaporator with heat storage for high-performance solar-driven evaporation. Adv. Sustainable Syst. 6, 2200236 (2022). https://doi.org/10.1002/adsu.202200236

    Article  Google Scholar 

  19. Xue, G., Liu, K., Chen, Q., Yang, P., Li, J., Duan, J., Qi, B., Zho, J.: Robust and low-cost flame-treated wood for high-performance solar steam generation. ACS Appl. Mater. Interfaces. 9, 15052–15057 (2017). https://doi.org/10.1021/acsami.7b01992

    Article  Google Scholar 

  20. Chen, C., Li, Y., Song, J., Yang, Z., Kuang, Y., Hitz, E., Jia, C., Gong, A., Jiang, F., Zhu, J.Y., Yang, B., Xie, J., Hu, L.: Highly flexible and efficient solar steam generation device. Adv. Mater. 29, 1701756 (2017). https://doi.org/10.1002/adma.201701756

    Article  Google Scholar 

  21. Wang, Z., Liu, H., Chen, F., Zhang, Q.: A three-dimensional printed biomimetic hierarchical graphene architecture for high-efficiency solar steam-generation. J. Mater. Chem. A. 8, 19387–19395 (2020). https://doi.org/10.1039/d0ta06797k

    Article  Google Scholar 

  22. Wang, F., Wei, D., Li, Y., Chen, T., Mu, P., Sun, H., Zhu, Z., Liang, W.: Chitosan/reduced graphene oxide-modified spacer fabric as a salt-resistant solar absorber for efficient solar steam generation. J. Mater. Chem. A. 7, 18311–18317 (2019). https://doi.org/10.1039/C9TA05859A

    Article  Google Scholar 

  23. Huang, H., Shi, H., Das, P., Qin, J., Cheng, H.: The chemistry and promising applications of graphene and porous graphene materials. Adv. Funct. Mater. 30, 1909035 (2020). https://doi.org/10.1002/adfm.201909035

    Article  Google Scholar 

  24. Li, D., Zhang, X., Zhang, S., Wang, D., Xing, B.: A flexible and salt-rejecting electrospun film-based solar evaporator for economic, stable and efficient solar desalination and wastewater treatment. Chemosphere. 267, 128916 (2017). https://doi.org/10.1016/j.chemosphere.2020.128916

    Article  Google Scholar 

  25. Yang, Y., Fan, W., Yuan, S., Tian, J., Chao, G., Liu, T.: A 3D-printed integrated MXene-based evaporator with a vertical array structure for salt-resistant solar desalination. J. Mater. Chem. A. 9, 23968–23976 (2021). https://doi.org/10.1039/D1TA07225K

    Article  Google Scholar 

  26. Hao, X., Yao, H., Zhang, P., Liao, Q., Zhu, K., Chang, J., Cheng, H., Yuan, J., Qu, L.: Multifunctional solar water harvester with high transport selectivity and fouling rejection capacity. Nat. Water. 1, 982–991 (2023). https://doi.org/10.1038/s44221-023-00152-y

    Article  Google Scholar 

  27. Zhu, B., Kou, H., Liu, Z., Wang, Z., Macharia, D., Zhu, M., Wu, B., Liu, X., Chen, Z.: Flexible and washable CNT-embedded pan nonwoven fabrics for solar-enabled evaporation and desalination of seawater. ACS Appl. Mater. Interface. 11(38), 35005–35014 (2019). https://doi.org/10.1021/acsami.9b12806

    Article  Google Scholar 

  28. Zhao, L., Wang, P., Tian, J., Wang, J., Li, L., Xu, L., Wang, Y., Fei, X., Li, Y.: A novel composite hydrogel for solar evaporation enhancement at air-water interface. Sci. Total Environ. 668, 153–160 (2019). https://doi.org/10.1016/j.scitotenv.2019.02.407

    Article  Google Scholar 

  29. Zhang, Y., Gong, S., Lu, R., Sam, E.K., Huang, L., Han, X., Liu, J., Lv, X.: Fresh water collection strategy: Invasive plant-based cellulose aerogels for highly efficient interfacial solar evaporation. Chem. Eng. J. 480, 148121 (2024). https://doi.org/10.1016/j.cej.2023.148121

    Article  Google Scholar 

  30. Zhang, Y., Sam, E.K., Liu, J., Lv, X.: Biomass-based/derived value-added porous absorbents for oil/water separation. Waste Biomass Valori. 14, 3147–3168 (2023). https://doi.org/10.1007/s12649-023-02112-9

    Article  Google Scholar 

  31. Wang, L., Wang, H., Liu, C., Xu, Y., Ma, S., Zhuang, Y., Zhang, Q., Yang, H., Xu, W.: Bioinspired cellulose membrane with hierarchically porous structure for highly efficient solar steam generation. Cellulose. 27(14), 8255–8267 (2020). https://doi.org/10.1007/s10570-020-03359-4

    Article  Google Scholar 

  32. Qiao, Y., Gu, Y., Meng, Y., Li, H., Zhang, B., Li, J.: Fabrication of stable MWCNT bucky paper for solar-driven interfacial evaporation by coupling γ-ray irradiation with borate crosslinking. Nucl. Sci. Tech. 32(12), 135 (2021). https://doi.org/10.1007/s41365-021-00978-9

    Article  Google Scholar 

  33. Li, W., Li, X., Chang, W., Wu, J., Liu, P., Wang, J., Yao, X., Yu, Z.: Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Res. 13(11), 3048–3056 (2020). https://doi.org/10.1007/s12274-020-2970-y

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Henan Provincial Science and Technology Research Project (no. 242102321066), Natural Science Foundation of Henan province (no. 232300420312), Innovation & Entrepreneurship Training Program for College Students in Henan Province (no. 202310463046), Science Foundation of Henan University of Technology (no. 2019BS010) and Henan University of Technology Young Backbone Teacher Training Program (no.21421260).

Author information

Authors and Affiliations

Authors

Contributions

MS: Conceptualization, Methodology, Formal analysis, Writing-original draft. JY&JL: Investigation, Visualization, Writing-original draft & editing. PH: Resources, Writing-review & editing. XJ: Resources, Writing-review & editing. WM: Methodology, Validation. LT: Resources. HS&YD: Resources, Writing-review. LZ: Conceptualization, Validation, Writing-review & editing, Supervision.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, M., Yu, J., Li, J. et al. Cellulose/Poly(Vinyl Alcohol)/Graphene Composite Photothermal Aerogel Membrane for Solar-driven Seawater Desalination. Waste Biomass Valor (2024). https://doi.org/10.1007/s12649-024-02540-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12649-024-02540-1

Keywords

Navigation