Skip to main content
Log in

Valorization of Moroccan Poultry Slaughterhouse Waste Using Anaerobic Digestion: Kinetic Study

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The effect of poultry slaughterhouse waste (PSHW) on various loads (0.5, 1, 1.5, 2, 2.5, and 3 g VS/L) on mesophilic anaerobic digestion (AD) in semi continuous mode is assessed in this study. The impact on stability parameters (pH, Alkalinity (Alk), and volatile fatty acids (VFA)) was significant at substrate concentrations varied between 0.5 and 2 g VS/L. The best value of the organic loading rate (OLR) of 0.91 g VS/L.d was visualized for the load of 2.5 g VS/L and the methane yield (YCH4) was 242.6 Nml/gVS. Mathematical modeling was employed to investigate the methane production from AD of PSHW. Various models, including Modified Gompertz (MGompertz), Logistic function, First order, Transference function, and Chen and Hashimoto model, were utilized in the exploration. The optimum model is the logistic function; for a 2 g VS/L, the difference between the experimental and predicted methane production was 0.4%.The optimal value of the coefficient of determination (R2) for logistic function is identified as 0.9946 at a loading of 2.5 g VS/L.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated will be available on request.

References

  1. Salminen, A.R., Zaker-Esteghamati, H., Scanes, C.G.: Chicken processing: impact, co-products and potential. Worlds Poult. Sci. J. 75, 55–68 (2019). https://doi.org/10.1017/S0043933918000764

    Article  Google Scholar 

  2. Hicham, E.A., Rintala, J.A.: Semi-continuous anaerobic digestion of solid poultry slaughterhouse waste: effect of hydraulic retention time and loading. Water Res. 36, 3175–3182 (2002). https://doi.org/10.1016/S0043-1354(02)00010-6

    Article  Google Scholar 

  3. Niek Schelling: POULTRY SECTOR MOROCCO Opportunity Identification Study, (2022)

  4. Sa, E.: Chemin du Coteau 28 CH–1123 ACLENS SUISSE. (2009)

  5. Les chiffres clés de la filière Aviculture—Fellah Trade, https://www.fellah-trade.com/fr/filiere-animale/chiffres-cles-aviculture

  6. Hicham, L., Mohammed, R., Maqboul, A., Aoujdad, R., Abdelhak, D., Mohammed, O.: Contribution to the characterization of liquid waste of poultry slaughter. Food Sci. Qual. Manag. 8, 10 (2014)

    Google Scholar 

  7. Kim, S., Kim, E., Hwang, S.: Methanogenic diversity changes in full-scale anaerobic digesters by co-digestion of food waste and sewage sludge. J. Mater. Cycles Waste Manag. 24, 2669–2676 (2022). https://doi.org/10.1007/s10163-022-01482-x

    Article  Google Scholar 

  8. Park, S., Yoon, Y.M., Han, S.K., Kim, D., Kim, H.: Effect of hydrothermal pre-treatment (HTP) on poultry slaughterhouse waste (PSW) sludge for the enhancement of the solubilization, physical properties, and biogas production through anaerobic digestion. Waste Manag. 64, 327–332 (2017). https://doi.org/10.1016/j.wasman.2017.03.004

    Article  Google Scholar 

  9. Alexandropoulou, M., Antonopoulou, G., Lyberatos, G.: Food industry waste’s exploitation via anaerobic digestion and fermentative hydrogen production in an up-flow column reactor. Waste Biomass Valorization. 7, 711–723 (2016). https://doi.org/10.1007/s12649-016-9544-y

    Article  Google Scholar 

  10. Valta, K., Damala, P., Angeli, E., Antonopoulou, G., Malamis, D., Haralambous, K.J.: Current treatment technologies of cheese whey and wastewater by Greek cheese manufacturing units and potential valorisation opportunities. Waste Biomass Valoriz. 8, 1649–1663 (2017). https://doi.org/10.1007/s12649-017-9862-8

    Article  Google Scholar 

  11. Habchi, S., Lahboubi, N., Asbik, M., Bari, H.E.: Enhancing biomethane production from food waste using olive pomace hydrochar: an optimization study. Environ. Adv. 15, 100477 (2024). https://doi.org/10.1016/j.envadv.2023.100477

    Article  Google Scholar 

  12. Habchi, S., Lahboubi, N., Sallek, B., El Bari, H.: Response surface methodology for anaerobic digestion of waste from poultry slaughterhouse: optimization of load and hydraulic retention time. Results Eng. (2023). https://doi.org/10.1016/j.rineng.2023.101215

    Article  Google Scholar 

  13. El Bari, H., Lahboubi, N., Habchi, S., Rachidi, S., Bayssi, O., Nabil, N., Mortezaei, Y., Villa, R.: Biohydrogen production from fermentation of organic waste, storage and applications. Clean. Waste Syst. (2022). https://doi.org/10.1016/j.clwas.2022.100043

    Article  Google Scholar 

  14. Hamraoui, K., Siles, J.A., Chica, A.F., Martín, M.A., El Bari, H.: Kinetics of combined hydrothermal pretreatment and anaerobic digestion of lignocellulosic biomass (pepper plant and eggplant). Environ. Technol. (2023). https://doi.org/10.1080/09593330.2021.1976283

    Article  Google Scholar 

  15. Pitk, P., Kaparaju, P., Vilu, R.: Methane potential of sterilized solid slaughterhouse wastes. Bioresour. Technol. 116, 42–46 (2012). https://doi.org/10.1016/j.biortech.2012.04.038

    Article  Google Scholar 

  16. El Gnaoui, Y., Frimane, A., Lahboubi, N., Herrmann, C., Barz, M., El Bari, H.: Biological pre-hydrolysis and thermal pretreatment applied for anaerobic digestion improvement: kinetic study and statistical variable selection. Clean. Waste Syst. 2, 100005 (2022). https://doi.org/10.1016/j.clwas.2022.100005

    Article  Google Scholar 

  17. Vidal, J., Carvajal, A., Huiliñir, C., Salazar, R.: Slaughterhouse wastewater treatment by a combined anaerobic digestion/solar photoelectro-Fenton process performed in semicontinuous operation. Chem. Eng. J. 378, 122097 (2019). https://doi.org/10.1016/j.cej.2019.122097

    Article  Google Scholar 

  18. Zhang, C., Xiao, G., Peng, L., Su, H., Tan, T.: The anaerobic co-digestion of food waste and cattle manure. Bioresour. Technol. 129, 170–176 (2013). https://doi.org/10.1016/j.biortech.2012.10.138

    Article  Google Scholar 

  19. Adou, K.E., Alle, O.A., Kouakou, A.R., Adouby, K., Drogui, P., Tyagi, R.D.: Anaerobic mono-digestion of wastewater from the main slaughterhouse in Yamoussoukro (Côte d’Ivoire): evaluation of biogas potential and removal of organic pollution. J. Environ. Chem. Eng. 8, 103770 (2020). https://doi.org/10.1016/j.jece.2020.103770

    Article  Google Scholar 

  20. Zhen, G., Lu, X., Kobayashi, T., Li, Y.Y., Xu, K., Zhao, Y.: Mesophilic anaerobic co-digestion of waste activated sludge and Egeria densa: performance assessment and kinetic analysis. Appl. Energy 148, 78–86 (2015). https://doi.org/10.1016/j.apenergy.2015.03.038

    Article  Google Scholar 

  21. Habchi, S., Nabila, L., Fadoua, K., Ikram, N., Yahya, L., Mohammed, B., Brahim, S., Hassan, E.B.: Effect of thermal pretreatment on the kinetic parameters of anaerobic digestion from recycled pulp and paper sludge. Ecol. Eng. Environ. Technol. 23, 192–201 (2022). https://doi.org/10.12912/27197050/143568

    Article  Google Scholar 

  22. Leite, V.D., Ramos, R.O., Silva, P.M.U., Lopes, W.S., Sousa, J.T.: Kinetic models describing the hydrolytic stage of the anaerobic co-digestion of solid vegetable waste and anaerobic sewage sludge. Biomass Convers. Biorefinery. (2021). https://doi.org/10.1007/s13399-021-01574-y

    Article  Google Scholar 

  23. Wang, S., Jena, U., Das, K.C.: Biomethane production potential of slaughterhouse waste in the United States. Energy Convers. Manag. 173, 143–157 (2018). https://doi.org/10.1016/j.enconman.2018.07.059

    Article  Google Scholar 

  24. Cuetos, M.J., Gómez, X., Martínez, E.J., Fierro, J., Otero, M.: Feasibility of anaerobic co-digestion of poultry blood with maize residues. Bioresour. Technol. 144, 513–520 (2013). https://doi.org/10.1016/j.biortech.2013.06.129

    Article  Google Scholar 

  25. Zhang, Y., Banks, C.J.: Co-digestion of the mechanically recovered organic fraction of municipal solid waste with slaughterhouse wastes. Biochem. Eng. J. 68, 129–137 (2012). https://doi.org/10.1016/j.bej.2012.07.017

    Article  Google Scholar 

  26. Elbeshbishy, E., Nakhla, G.: Comparative study of the effect of ultrasonication on the anaerobic biodegradability of food waste in single and two-stage systems. Bioresour. Technol. 102, 6449–6457 (2011). https://doi.org/10.1016/j.biortech.2011.03.082

    Article  Google Scholar 

  27. Lahboubi, N., Kerrou, O., Karouach, F., Bakraoui, M., Schüch, A., Schmedemann, K., Stinner, W., El Bari, H., Essamri, A.: Methane production from mesophilic fed-batch anaerobic digestion of empty fruit bunch of palm tree. Biomass Convers. Biorefinery. (2020). https://doi.org/10.1007/s13399-020-00864-1

    Article  Google Scholar 

  28. Ourradi, H., Lahboubi, N., Habchi, S., Hanine, H., El Bari, H.: Methane production from date seed cake (Phoenix dactylifera L.) using mesophilic fed-batch anaerobic digestion. Clean. Waste Syst. 2, 100009 (2022). https://doi.org/10.1016/j.clwas.2022.100009

    Article  Google Scholar 

  29. Granada, C.E., Hasan, C., Marder, M., Konrad, O., Vargas, L.K., Passaglia, L.M.P., Giongo, A., de Oliveira, R.R., de Pereira, M.L., de Jesus Trindade, F., Sperotto, R.A.: Biogas from slaughterhouse wastewater anaerobic digestion is driven by the archaeal family Methanobacteriaceae and bacterial families Porphyromonadaceae and Tissierellaceae. Renew. Energy 118, 840–846 (2018). https://doi.org/10.1016/j.renene.2017.11.077

    Article  Google Scholar 

  30. Rodríguez-Abalde, A., Guivernau, M., Prenafeta-Boldú, F., Flotats, X., Fernandez, B.: Characterization of microbial community dynamics during the anaerobic codigestion of thermally pre-treated slaughterhouse wastes with glycerin addition. Bioprocess Biosyst. Eng. 42, 1175 (2019)

    Article  Google Scholar 

  31. Cuetos, M.J., Morán, A., Otero, M., Gómez, X.: Anaerobic co-digestion of poultry blood with OFMSW: FTIR and TG–DTG study of process stabilization. Environ. Technol. 30, 571–582 (2009). https://doi.org/10.1080/09593330902835730

    Article  Google Scholar 

  32. Salehiyoun, A.R., Di Maria, F., Sharifi, M., Norouzi, O., Zilouei, H., Aghbashlo, M.: Anaerobic co-digestion of sewage sludge and slaughterhouse waste in existing wastewater digesters. Renew. Energy 145, 2503–2509 (2020). https://doi.org/10.1016/j.renene.2019.08.001

    Article  Google Scholar 

  33. Yoon, Y.M., Kim, S.H., Oh, S.Y., Kim, C.H.: Potential of anaerobic digestion for material recovery and energy production in waste biomass from a poultry slaughterhouse. Waste Manag. 34, 204–209 (2014). https://doi.org/10.1016/j.wasman.2013.09.020

    Article  Google Scholar 

  34. Ripoll, V., Agabo-García, C., Solera, R., Perez, M.: Anaerobic digestion of slaughterhouse waste in batch and anaerobic sequential batch reactors. Biomass Convers. Biorefinery. (2022). https://doi.org/10.1007/s13399-021-02179-1

    Article  Google Scholar 

  35. Vavilin, V.A., Fernandez, B., Palatsi, J., Flotats, X.: Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview. Waste Manag. 28, 939–951 (2008). https://doi.org/10.1016/j.wasman.2007.03.028

    Article  Google Scholar 

  36. Ware, A., Power, N.: Modelling methane production kinetics of complex poultry slaughterhouse wastes using sigmoidal growth functions. Renew. Energy 104, 50–59 (2017). https://doi.org/10.1016/j.renene.2016.11.045

    Article  Google Scholar 

  37. Panigrahi, S., Sharma, H.B., Dubey, B.K.: Anaerobic co-digestion of food waste with pretreated yard waste: a comparative study of methane production, kinetic modeling and energy balance. J. Clean. Prod. 243, 118480 (2020). https://doi.org/10.1016/j.jclepro.2019.118480

    Article  Google Scholar 

  38. Kafle, G.K., Bhattarai, S., Kim, S.H., Chen, L.: Effect of feed to microbe ratios on anaerobic digestion of Chinese cabbage waste under mesophilic and thermophilic conditions: biogas potential and kinetic study. J. Environ. Manage. 133, 293–301 (2014). https://doi.org/10.1016/j.jenvman.2013.12.006

    Article  Google Scholar 

  39. Li, P., Li, W., Sun, M., Xu, X., Zhang, B., Sun, Y.: Evaluation of biochemical methane potential and kinetics on the anaerobic digestion of vegetable crop residues. Energies 12, 26 (2019). https://doi.org/10.3390/en12010026

    Article  Google Scholar 

  40. Hernández-Fydrych, V.C., Benítez-Olivares, G., Meraz-Rodríguez, M.A., Salazar-Peláez, M.L., Fajardo-Ortiz, M.C.: Methane production kinetics of pretreated slaughterhouse wastewater. Biomass Bioenergy 130, 105385 (2019). https://doi.org/10.1016/j.biombioe.2019.105385

    Article  Google Scholar 

Download references

Funding

This publication is part of the research Project titled “Hybrid Biochemical and Thermochemical conversion of Slaughterhouse biowaste for Renewable Energy production”. (BIOTHEREP) LEAP-RE (Europe-Africa Renewable Energy).

Author information

Authors and Affiliations

Authors

Contributions

SH: Writing original draft, Methodology, Conceptualization, review and editing. NL: Review and editing. HEB: Conceptualization, Supervision, review and editing.

Corresponding author

Correspondence to Sanae Habchi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habchi, S., Lahboubi, N. & El Bari, H. Valorization of Moroccan Poultry Slaughterhouse Waste Using Anaerobic Digestion: Kinetic Study. Waste Biomass Valor (2024). https://doi.org/10.1007/s12649-024-02450-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12649-024-02450-2

Keywords

Navigation