Skip to main content
Log in

Pinhão Coat (Araucaria angustifolia (Bertol.) Kuntze) Nanosuspension as a Potential Additive in Cosmetic Formulations with Wound Healing Effect

  • Short Communication
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Development of a sustainable route to value pinhão (Araucaria angustifolia (Bertol.) Kuntze) coat through mechanical defibrillation process and employment as an additive in cosmetic formulations.

Methods

The pinhão coat nanosuspension (PCN) was added to the Lanette® base at concentrations of 0.5, 1.0, 1.5, and 2.0%. Subsequently, the PCN-based formulations were evaluated concerning their appearance, physiochemical aspects (pH, spreadability, and stability tests), rheological behavior, cytotoxicity, and wound closure capacity.

Results

The outcomes showed that the PCN addition conferred a light brown milky color to the lotions, besides decreasing the pH values and increasing the spreadability compared to the control formulations. Related to the rheological analysis, the lotions with PCN displayed pseudoplastic behavior, an aspect of strong gel, and were also stable through the thermomechanical analysis. The cell viability analysis showed no cytotoxicity of the PCN-based formulations at concentrations inferior to 0.05 mg/mL. Furthermore, the in vitro scratch wound assay revealed that the presence of PCN (1.5 and 2.0%) promoted a complete wound contraction after 72 h of treatment.

Conclusion

The study demonstrated a sustainable alternative to apply pinhão by-product in cosmetic formulation with wound-healing effects.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data Availability

The authors declare that all data supporting the findings of this study are available within the article and its supplementary information files.

References

  1. Saravanan, A., Yaashikaa, P.R., Kumar, P.S., Thamarai, P., Deivayanai, V.C., Rangasamy, G.: A comprehensive review on techno-economic analysis of biomass valorization and conversional technologies of lignocellulosic residues. Ind. Crops Prod. 200, 116822 (2023). https://doi.org/10.1016/j.indcrop.2023.116822

    Article  Google Scholar 

  2. Santos, C.H.K., Baqueta, M.R., Coqueiro, A., Dias, M.I., Barros, L., Barreiro, M.F., Ferreira, I.C.F.R., Gonçalves, O.H., Bona, E., da Silva, M.V., Leimann, F.V.: Systematic study on the extraction of antioxidants from pinhão (Araucaria angustifolia (bertol.) Kuntze) coat. Food Chem. 261, 216–223 (2018). https://doi.org/10.1016/j.foodchem.2018.04.057

    Article  Google Scholar 

  3. Trojaike, G.H., Biondo, E., Padilha, R.L., Brandelli, A., Sant’Anna, V.: Antimicrobial activity of Araucaria angustifolia seed (Pinhão) coat extract and its synergism with thermal treatment to inactivate Listeria monocytogenes. Food Bioprocess. Technol. 12, 193–197 (2019). https://doi.org/10.1007/s11947-018-2192-4

    Article  Google Scholar 

  4. De Freitas, T.B., Santos, C.H.K., da Silva, M.V., Shirai, M.A., Dias, M.I., Barros, L., Barreiro, M.F., Ferreira, I.C.F.R., Gonçalves, O.H., Leimann, F.V.: Antioxidants extraction from Pinhão (Araucaria angustifolia (Bertol.) Kuntze) coats and application to zein films. Food Packag. Shelf Life 15, 28–34 (2018). https://doi.org/10.1016/j.fpsl.2017.10.006

    Article  Google Scholar 

  5. Fonseca, L.M., Silva, F.T., da, Bruni, G.P., Borges, C.D., Zavareze, E.R., Dias, A.R.G.: Aerogels based on corn starch as carriers for pinhão coat extract (Araucaria angustifolia) rich in phenolic compounds for active packaging. Int. J. Biol. Macromol. 169, 362–370 (2021). https://doi.org/10.1016/j.ijbiomac.2020.12.110

    Article  Google Scholar 

  6. Daudt, R.M., Back, P.I., Cardozo, N.S.M., Marczak, L.D.F., Külkamp-Guerreiro, I.C.: Pinhão starch and coat extract as new natural cosmetic ingredients: topical formulation stability and sensory analysis. Carbohydr. Polym. 134, 573–580 (2015). https://doi.org/10.1016/j.carbpol.2015.08.038

    Article  Google Scholar 

  7. de Lima, G.G., de Miranda, N.B., Timm, T.G., Matos, M., Moraes de Lima, A., Luiz Esteves, T., Magalhães, W., Tavares, B.B., Hansel, L., Helm, F.A.: Characterisation and in vivo evaluation of Araucaria angustifolia pinhão seed coat nanosuspension as a functional food source. Food Funct. 11, 9820–9832 (2020). https://doi.org/10.1039/D0FO02256J

    Article  Google Scholar 

  8. Krishnan, K., Thomas, A.: Recent advances on herb-derived constituents-incorporated wound-dressing materials: a review. Polym. Adv. Technol. 30, 823–838 (2019). https://doi.org/10.1002/pat.4540

    Article  Google Scholar 

  9. Cui, S., Jiang, H., Chen, L., Xu, J., Sun, W., Sun, H., Xie, Z., Xu, Y., Yang, F., Liu, W., Feng, F., Qu, W.: Design, synthesis and evaluation of wound healing activity for β-sitosterols derivatives as potent Na+/K+-ATPase inhibitors. Bioorg. Chem. 98, 103150 (2020). https://doi.org/10.1016/j.bioorg.2019.103150

    Article  Google Scholar 

  10. Singleton, V.L., Rossi, J.A., Jr., J.: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic 16, 144 (1965)

    Article  Google Scholar 

  11. Brand-Williams, W., Cuvelier, M.E., Berset, C.: Use of a free radical method to evaluate antioxidant activity, (1995)

  12. Benzie, I.F.F., Strain, J.J.: The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal. Biochem. (1996). https://doi.org/10.1006/abio.1996.0292

    Article  Google Scholar 

  13. Rufino, M., do Alves, S.M., Brito, R.E., Morais, E.S., de Sampaio, S.M.: Metodologia Científica: determinação da atividade antioxidantes total em frutas pelo método de redução do ferro (FRAP). Comunicado Técnico 125. (2006)

  14. Souza, L.O., Lessa, O.A., Dias, M.C., Tonoli, G.H.D., Rezende, D.V.B., Martins, M.A., Neves, I.C.O., de Resende, J.V., Carvalho, E.E.N., de Boas, B.V., de Oliveira, E.V., Franco, J.R.: Study of morphological properties and rheological parameters of cellulose nanofibrils of cocoa shell (Theobroma cacao L.). Carbohydr. Polym. 214, 152–158 (2019). https://doi.org/10.1016/j.carbpol.2019.03.037

    Article  Google Scholar 

  15. Aliabadi, M., Chee, B.S., Matos, M., Cortese, Y.J., Nugent, M.J.D., de Lima, T.A.M., Magalhães, W.L.E., de Lima, G.G.: Yerba mate extract in microfibrillated cellulose and corn starch films as a potential wound healing bandage. Polym. (Basel). 12, 1–18 (2020). https://doi.org/10.3390/polym12122807

    Article  Google Scholar 

  16. De Lima, G.G., Chee, B.S., Moritz, V.F., Cortese, Y.J., Magalhães, W.L.E., Devine, D.M., Nugent, M.J.D.: The production of a novel poly(vinyl alcohol) hydrogel cryogenic spheres for immediate release using a droplet system. Biomed. Phys. Eng. Exp. (2019). https://doi.org/10.1088/2057-1976/ab2547

    Article  Google Scholar 

  17. de Moura Sperotto, N.D., Steffens, L., Veríssimo, R.M., Henn, J.G., Péres, V.F., Vianna, P., Chies, J.A.B., Roehe, A., Saffi, J., Moura, D.J.: Wound healing and anti-inflammatory activities induced by a Plantago australis hydroethanolic extract standardized in verbascoside. J. Ethnopharmacol. 225, 178–188 (2018). https://doi.org/10.1016/j.jep.2018.07.012

    Article  Google Scholar 

  18. Ko, J.: Inhibitory effect of trolox on the migration and invasion of human lung and cervical cancer cells. Int. J. Mol. Med. (2011). https://doi.org/10.3892/ijmm.2011.832

    Article  Google Scholar 

  19. Leal, F.C., Ueda, K.M., Tucunduva Arantes, M.S., de Morais de Lima, T.A., Hansel, F.A., Magalhães, E., Helm, W.L., Freitas, C.V., de Farias, R.A., Mafra, F.O., Igarashi-Mafra, M.R.: Impact of defibrillation technique on the rheological, thermo-mechanical, and nutritional properties of nanosuspensions produced from multiple fractions of pinhão seed (Araucaria angustifolia (Bertol.) Kuntze). Food Chem. 440, 138195 (2024). https://doi.org/10.1016/j.foodchem.2023.138195

    Article  Google Scholar 

  20. Sant’Anna, V., Sfoglia, N.M., Mercali, G.D., Corrêa, A.P.F., Brandelli, A.: Effect of cooking on polyphenols and antioxidant activity of Araucaria angustifolia seed coat and evaluation of phytochemical and microbiological stability over storage. Int. J. Food Sci. Technol. 51, 1932–1936 (2016). https://doi.org/10.1111/ijfs.13170

    Article  Google Scholar 

  21. Bae, J., Kim, N., Shin, Y., Kim, S.-Y., Kim, Y.-J.: Activity of catechins and their applications. Biomed. Dermatol. 4, 8 (2020). https://doi.org/10.1186/s41702-020-0057-8

    Article  Google Scholar 

  22. Nyström, A., Bruckner-Tuderman, L.: Matrix molecules and skin biology. Semin Cell. Dev. Biol. 89, 136–146 (2019). https://doi.org/10.1016/j.semcdb.2018.07.025

    Article  Google Scholar 

  23. Charoenchon, N., Rhodes, L.E., Nicolaou, A., Williamson, G., Watson, R.E.B., Farrar, M.D.: Ultraviolet radiation-induced degradation of dermal extracellular matrix and protection by green tea catechins: a randomized controlled trial. Clin. Exp. Dermatol. 47, 1314–1323 (2022). https://doi.org/10.1111/ced.15179

    Article  Google Scholar 

  24. Chu, C.C., Nyam, K.L.: Kenaf (Hibiscus cannabinus L.) seed oil: application as cosmetic product ingredients. Ind. Crops Prod. 156, 112871 (2020). https://doi.org/10.1016/j.indcrop.2020.112871

    Article  Google Scholar 

  25. Krapfenbauer, G., Kinner, M., Gössinger, M., Schönlechner, R., Berghofer, E.: Effect of thermal treatment on the quality of cloudy apple juice. J. Agric. Food Chem. 54, 5453–5460 (2006). https://doi.org/10.1021/jf0606858

    Article  Google Scholar 

  26. Lapasin, R., Pricl, S.: Rheology of industrial polysaccharides: theory and applications. Springer, Boston (1995)

    Book  Google Scholar 

  27. Karasu, S., Toker, O.S., Yilmaz, M.T., Karaman, S., Dertli, E.: Thermal loop test to determine structural changes and thermal stability of creamed honey: rheological characterization. J. Food Eng. 150, 90–98 (2015). https://doi.org/10.1016/j.jfoodeng.2014.10.004

    Article  Google Scholar 

  28. ISO – 10993-5: Biological evaluation of medical devices. Part 5. Tests for in vitro cytotoxicity (2009)

  29. de Lima, T.A., de Lima, M., Chee, G.G., Henn, B.S., Cortese, J.G., Matos, Y.J., Helm, M., Magalhães, C.V., Nugent, W.L.E.: Characterization of gels and films produced from Pinhão seed coat nanocellulose as a potential use for wound healing dressings and screening of its compounds towards antitumour effects. Polymers (Basel) 14, 2776 (2022). https://doi.org/10.3390/polym14142776

    Article  Google Scholar 

  30. Isemura, M.: Catechin in human health and disease. Molecules 24, 528 (2019). https://doi.org/10.3390/molecules24030528

    Article  Google Scholar 

  31. Halliwell, B.: Antioxidants and human disease: a general introduction. Nutr. Rev. 55, S44–S49 (2009). https://doi.org/10.1111/j.1753-4887.1997.tb06100.x

    Article  Google Scholar 

  32. Soo Min, K., Eun Ji, G., Seung Hwan, J., Sang Mock, L., Woo Jong, S., Sik, J.: Toxicity evaluation of cellulose nanofibers (Cnfs) for cosmetic industry application. J. Toxicol. Risk Assess (2019). https://doi.org/10.23937/2572-4061.1510029

    Article  Google Scholar 

  33. Hakkarainen, T., Koivuniemi, R., Kosonen, M., Escobedo-Lucea, C., Sanz-Garcia, A., Vuola, J., Valtonen, J., Tammela, P., Mäkitie, A., Luukko, K., Yliperttula, M., Kavola, H.: Nanofibrillar cellulose wound dressing in skin graft donor site treatment. J. Control Release. 244, 292–301 (2016). https://doi.org/10.1016/j.jconrel.2016.07.053

    Article  Google Scholar 

  34. Hammam, W.E., Gad, A.M., Gad, M.K., Kirollos, F.N., Yassin, N.A., Tantawi, M.E., El Hawary, S.S.E.: Pyrus communis L. (Pear) and Malus domestica Borkh. (apple) leaves lipoidal extracts as sources for beta-sitosterol rich formulae and their wound healing evaluation. Nat. Prod. Res. (2022). https://doi.org/10.1080/14786419.2022.2056181

    Article  Google Scholar 

  35. Ahmed, O.M., Mohamed, T., Moustafa, H., Hamdy, H., Ahmed, R.R., Aboud, E.: Quercetin and low level laser therapy promote wound healing process in diabetic rats via structural reorganization and modulatory effects on inflammation and oxidative stress. Biomed. Pharmacother. 101, 58–73 (2018). https://doi.org/10.1016/j.biopha.2018.02.040

    Article  Google Scholar 

  36. Su, X., Liu, X., Wang, S., Li, B., Pan, T., Liu, D., Wang, F., Diao, Y., Li, K.: Wound-healing promoting effect of total tannins from Entada phaseoloides (L.)  Merr. rats Burns 43, 830–838 (2017). https://doi.org/10.1016/j.burns.2016.10.010

    Article  Google Scholar 

Download references

Funding

This study was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. Professors M.R. Mafra and L. Igarashi-Mafra are grateful to the Brazilian National Council for Scientific and Technological Development (CNPq—Grant 315667/2021–4 and 316815/2021–7, respectively).

Author information

Authors and Affiliations

Authors

Contributions

Fernando Castro Leal: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Validation, Visualization, Writing-original draft. Karina Mayumi Ueda: Formal analysis, Investigation, Methodology, Validation, Visualization, Writing-original draft. Tielidy Angelina Moraes de Lima: Methodology, Data curation, Formal analysis. Cristiane Vieira Helm: Resources; Investigation, Methodology, Validation. Rilton Alves de Freitas: Data curation; Methodology, Formal analysis, Visualization. Washington Luiz Esteves Magalhães: Investigation, Methodology, Validation, Visualization. Marcos R. Mafra: Project administration, Resources, Validation, Visualization, Writing-review & editing. Luciana Igarashi-Mafra: Conceptualization, Project administration, Resources, Software, Validation, Visualization, Funding acquisition, Writing-review & editing.

Corresponding author

Correspondence to Luciana Igarashi-Mafra.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 158.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leal, F.C., Ueda, K.M., de Morais de Lima, T.A. et al. Pinhão Coat (Araucaria angustifolia (Bertol.) Kuntze) Nanosuspension as a Potential Additive in Cosmetic Formulations with Wound Healing Effect. Waste Biomass Valor (2024). https://doi.org/10.1007/s12649-024-02427-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12649-024-02427-1

Keywords

Navigation