Skip to main content
Log in

Degradation of Rice Straw in the Presence of ZnO Nanoparticles and Cellulase Production with the Help of Streptomycetes Species

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This study aims to determine how ZnO nanoparticles affect rice straw during solid-state fermentation and cellulase production. The zinc oxide (ZnO) nanoparticles of concentration 1 mg/gm was supplemented in a solid-state fermentation medium with the isolated actinobacterial species Streptomycetes calvus for cellulase production. It was also noticed that the addition of the nanoparticles catalyzed the biodegradation of rice straw complex structure and facilitates cellulase production. So, higher cellulase activities were observed in the enzymes produced in the presence of the ZnO, i.e., 0.38 IU/ml, followed by 0.27 IU/ml in control (without nanoparticles). Further, XRD, SEM and FTIR clearly showed the degradation of lignocellulose and morphological changes in rice straw structure during fermentation. Additionally, higher FPases activities and saccharification percentage indicated that nanoparticle-mediated cellulases would be a better option for further applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The results include all the data generated in the study.

References

  1. Basak, A., Gavande, P.V., Murmu, N., Ghosh, S.: Optimization and biochemical characterization of a thermotolerant processive cellulase, PtCel1, of Parageobacillus thermoglucosidasius NBCB1. J. Basic Microbiol. 63, 326–339 (2023)

    Article  Google Scholar 

  2. Sangrila, S., Maiti, T.K.: Cellulase production by bacteria: a review. Br. Microbiol. Res. J. 3, 235–258 (2013)

    Article  Google Scholar 

  3. Borkar, S.S., Shetty, M., Pai, A., Chandrashekar, K., Ram, A.H., Kolathur, K.K., Venkatesh, K.B., Khera, K.: Treasure wrapped in an enigma: chemistry and industrial relevance of enzymes from rare actinomycetes. Rasayan J. Chem. 15, 2493–2501 (2022)

    Article  Google Scholar 

  4. Srivastava, N., Srivastava, M., Mishra, P., Gupta, V.K., Molina, G., Rodriguez-Couto, S., Manikanta, A., Ramteke, P.: Applications of fungal cellulases in biofuel production: advances and limitations. Renew. Sustain. Energy Rev. 82, 2379–2386 (2018)

    Article  Google Scholar 

  5. Rahnama, N., Mamat, S., Shah, U.K.M., Ling, F.H., Rahman, N.A.A., Ariff, A.B.: Effect of alkali pretreatment of rice straw on cellulase and xylanase production by local Trichoderma harzianum SNRS3 under solid state fermentation. BioResources (2013). https://doi.org/10.15376/biores.8.2.2881-2896

    Article  Google Scholar 

  6. Maftukhah, S., Abdullah, A.: Cellulase enzyme production from rice straw using solid state fermentation and fungi Aspergillus niger ITBCC L74. Presented at the MATEC web of conferences (2018)

  7. Singh, B., Kumar, A.: Process development for sodium carbonate pretreatment and enzymatic saccharification of rice straw for bioethanol production. Biomass Bioenerg. 138, 105574 (2020)

    Article  Google Scholar 

  8. Duque, A., Manzanares, P., Ballesteros, M.: Extrusion as a pretreatment for lignocellulosic biomass: fundamentals and applications. Renewable Energy 114, 1427–1441 (2017)

    Article  Google Scholar 

  9. Srivastava, N., Hussain, A., Kushwaha, D., Haque, S., Mishra, P.K., Gupta, V.K., Srivastava, M.: Nickel ferrite nanoparticles induced improved fungal cellulase production using residual algal biomass and subsequent hydrogen production following dark fermentation. Fuel 304, 121391 (2021). https://doi.org/10.1016/j.fuel.2021.121391

    Article  Google Scholar 

  10. Prakash, D.V.S., Roy, K., Sirohi, S.: Enhanced bactericidal efficacy of ZnO nanoparticles in conjugation with different antibiotics. BioNanoScience. 13, 1250–1261 (2023). https://doi.org/10.1007/s12668-023-01156-4

    Article  Google Scholar 

  11. Dasta, P., Pratap Singh, A., Pratap Singh, A.: Zinc oxide nanoparticle as a heterogeneous catalyst in generation of biodiesel. Mater. Today Proc. 52, 751–757 (2022). https://doi.org/10.1016/j.matpr.2021.10.143

    Article  Google Scholar 

  12. Srivastava, N., Srivastava, M., Mishra, P., Ramteke, P.W.: Application of ZnO nanoparticles for improving the thermal and pH stability of crude cellulase obtained from Aspergillus fumigatus AA001. Front. Microbiol. 7, 514 (2016)

    Article  Google Scholar 

  13. Aggarwal, N.K., Goyal, V., Saini, A., Yadav, A., Gupta, R.: Enzymatic saccharification of pretreated rice straw by cellulases from Aspergillus niger BK01. 3 Biotech. 7, 1–10 (2017)

    Article  Google Scholar 

  14. Yu, M., Zhou, R., Li, J., Han, L., Wang, H., Zhang, S., Zhao, J., Wang, X., Song, J., Xiang, W.: Herbidospora solisilvae sp. nov., a novel cellulose-degrading actinobacterium isolated from forest soil. Antonie Leeuwenhoek. 114, 581–590 (2021)

    Article  Google Scholar 

  15. Hendricks, C.W., Doyle, J.D., Hugley, B.: A new solid medium for enumerating cellulose-utilizing bacteria in soil. Appl. Environ. Microbiol. 61, 2016–2019 (1995)

    Article  Google Scholar 

  16. Kasana, R.C., Salwan, R., Dhar, H., Dutt, S., Gulati, A.: A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr. Microbiol. 57, 503–507 (2008)

    Article  Google Scholar 

  17. Srivastava, N., Singh, J., Ramteke, P.W., Mishra, P., Srivastava, M.: Improved production of reducing sugars from rice straw using crude cellulase activated with Fe3O4/Alginate nanocomposite. Biores. Technol. 183, 262–266 (2015)

    Article  Google Scholar 

  18. Eveleigh, D.E., Mandels, M., Andreotti, R., Roche, C.: Measurement of saccharifying cellulase. Biotechnol. Biofuels 2, 1–8 (2009)

    Article  Google Scholar 

  19. Ghose, T.: Measurement of cellulase activities. Pure Appl. Chem. 59, 257–268 (1987)

    Article  Google Scholar 

  20. Prasad, P., Singh, T., Bedi, S.: Characterization of the cellulolytic enzyme produced by Streptomyces griseorubens (Accession No. AB184139) isolated from Indian soil. J. King Saud Univ. Sci. 25, 245–250 (2013)

    Article  Google Scholar 

  21. Begum, M., Alimon, A.R.: Bioconversion and saccharification of some lignocellulosic wastes by Aspergillus oryzae ITCC-4857.01 for fermentable sugar production. Electro. J. Biotechnol. 14, 3–3 (2011)

    Article  Google Scholar 

  22. Segal, L., Creely, J.J., Martin, A., Jr., Conrad, C.: An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29, 786–794 (1959)

    Article  Google Scholar 

  23. Vitorino, L.C., Bessa, L.A.: Technological microbiology: development and applications. Front. Microbiol. 8, 827 (2017)

    Article  Google Scholar 

  24. Acharya, A., Joshi, D., Shrestha, K., Bhatta, D.: Isolation and screening of thermophilic cellulolytic bacteria from compost piles. Sci. World. 10, 43–46 (2012)

    Article  Google Scholar 

  25. Dhananjeyan, V., Selvan, N., Dhanapal, K.: Isolation, characterization, screening and antibiotic sensitivity of Actinomycetes from locally (near MCAS) collected soil samples. J. Biol. Sci. 10, 514–519 (2010)

    Article  Google Scholar 

  26. Slimani, H., Bessous, N., Dagher, S., Hilal-Alnaqbi, A., El Gamal, M., Akhozheya, B., Mohammed, M.: Growth of ZnO nanorods on FTO glass substrate. Mater. Res. Exp. 7, 025026 (2020)

    Article  Google Scholar 

  27. Ali, D., Arooj, N., Muneer, I., Bashir, F., Hanif, M., Ali, S.: Sustainable synthesis of ZnO nanoparticles from Psathyrella candolleana mushroom extract: characterization, antibacterial activity and photocatalytic potential. Inorg. Chem. Commun. 158, 111588 (2023). https://doi.org/10.1016/j.inoche.2023.111588

    Article  Google Scholar 

  28. Alrumman, S.A.: Enzymatic saccharification and fermentation of cellulosic date palm wastes to glucose and lactic acid. Braz. J. Microbiol. 47, 110–119 (2016)

    Article  Google Scholar 

  29. Sakhiya, A.K., Anand, A., Vijay, V.K., Kaushal, P.: Thermal decomposition of rice straw from rice basin of India to improve energy-pollution nexus: kinetic modeling and thermodynamic analysis. Energy Nexus. 4, 100026 (2021)

    Article  Google Scholar 

  30. Sonwani, R., Gupta, S., Soni, R.: Production of bioethanol from biodegraded alkali pretreated rice straw. Vegetos. 33, 128–134 (2020)

    Article  Google Scholar 

  31. Tsegaye, B., Balomajumder, C., Roy, P.: Biodelignification and hydrolysis of rice straw by novel bacteria isolated from wood feeding termite. Biotech 8, 1–11 (2018)

    Google Scholar 

  32. Lara-Serrano, M., Morales-delaRosa, S., Campos-Martín, J.M., Fierro, J.L.: Fractionation of lignocellulosic biomass by selective precipitation from ionic liquid dissolution. Appl. Sci. 9, 1862 (2019)

    Article  Google Scholar 

  33. Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A., Johnson, D.K.: Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 3, 1–10 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Central Research Facility (CRF), IIT Delhi, for providing sophisticated instrumentation facility support for analysis. The authors also thank the Head of CRDT for providing basic facilities. The authors are grateful to MHRD and IIT Delhi for fellowship support.

Funding

The authors have not disclosed any funding from external sources.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the conceptualization of the work. ZJ and GDT contributed to in vitro studies, data collection, result analysis and writing of the manuscript. MG Review and editing KD Supervised, proof reading, review and editing.

Corresponding author

Correspondence to Kavya Dashora.

Ethics declarations

Competing interest

The authors declare no competing interest.

Ethical Approval

Not applicable.

Informed Consent

Not Applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javed, Z., Tripathi, G.D., Gattupalli, M. et al. Degradation of Rice Straw in the Presence of ZnO Nanoparticles and Cellulase Production with the Help of Streptomycetes Species. Waste Biomass Valor 15, 3045–3053 (2024). https://doi.org/10.1007/s12649-023-02374-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02374-3

Keywords

Navigation