Skip to main content
Log in

Valorization of Industrial Byproduct-Rice Bran Acid Oil: Direct Extraction and Evaluation of Ferulic Acid and Phytosterols/Triterpene Alcohols for Cosmetic Applications

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Rice bran acid oil (RBAO) is a free fatty acid-containing byproduct derived from the neutralization step of rice bran oil refinery. It is usually used as a low-value product for animal feed. Given the large amount of bioactive compound, γ-oryzanol, in the RBAO, there is the opportunity to redeploy RBAO as a source for other high-value products. The present study aims to develop a simple alkaline hydrolysis method that could concurrently produce ferulic acid (FA) and phytosterols/triterpene alcohols (PTs) from the γ-oryzanol in the RBAO. The biological activities of FA and PTs were then evaluated for their suitability as cosmetic ingredients.

Methods

The molar ratios of RBAO to KOH and the hydrolysis reaction time were investigated at 80 °C. The hydrolyzed products were chemically characterized by high-performance size-exclusion chromatography and were subsequently purified to remove impurities. The biological activities including sun protection factor, antioxidant activity, tyrosinase inhibition and collagenase activities were evaluated.

Results

The study shows that the RBAO to KOH ratio of 1:15 with 15 min reaction time gave the highest FA yield. The purification procedure resulted in FA and PTs purities of 96.93% and 90.23%, respectively. The FA demonstrated potent cosmetic properties (UV absorption, antioxidant activities, tyrosinase and collagenase inhibitory effects) that compared favorably with that of commercial FA. On the other hand, the PTs showed little activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals.

Conclusion

This work presents a simple, fast and energy-efficient methodology for the simultaneous production of FA and PTs from RBAO. The RBAO-derived FA is suitable for cosmetic applications, while the PTs showed weak inhibitory activity on DPPH radicals.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data will be kept by the authors of this study.

Code Availability

Not applicable.

References

  1. Kim, K.H., Tsao, R., Yang, R., Cui, S.W.: Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem. 95(3), 466–473 (2006). https://doi.org/10.1016/j.foodchem.2005.01.032

    Article  Google Scholar 

  2. Kumar, N., Pruthi, V.: Potential applications of ferulic acid from natural sources. Biotechnol. Rep. 4, 86–93 (2014). https://doi.org/10.1016/j.btre.2014.09.002

    Article  Google Scholar 

  3. Tam, L.T., Ha, N.C., Thom, L.T., Zhu, J.Y., Wakisaka, M., Hong, D.D.: Ferulic acid extracted from rice bran as a growth promoter for the microalga Nannochloropsis oculata. J. Appl. Phycol. 33, 37–45 (2021). https://doi.org/10.1007/s10811-020-02166-5

    Article  Google Scholar 

  4. Qian, W., Liu, W., Zhu, D., Cao, Y., Tang, A., Gong, G., Su, H.: Natural skin-whitening compounds for the treatment of melanogenesis (review). Exp. Ther. Med. 20(1), 173–185 (2020). https://doi.org/10.3892/etm.2020.8687

    Article  Google Scholar 

  5. Son, M.J., Rico, C.W., Nam, S.H., Kang, M.Y.: Influence of oryzanol and ferulic acid on the lipid metabolism and antioxidative status in high fat-fed mice. J. Clin. Biochem. Nutr. 46(2), 150–156 (2010). https://doi.org/10.3164/jcbn.09-98

    Article  Google Scholar 

  6. Staniforthet, V., Huang, W.C., Aravindaram, K., Yang, N.S.: Ferulic acid, a phenolic phytochemical, inhibits UVB-induced matrix metalloproteinases in mouse skin via posttranslational mechanisms. J. Nutr. Biochem. 23(5), 443–451 (2012). https://doi.org/10.1016/j.jnutbio.2011.01.009

    Article  Google Scholar 

  7. Valério, R., Cadima, M., Crespo, J.G., Brazinha, C.: Extracting ferulic acid from corn fibre using mild alkaline extraction: a pilot scale study. Waste Biomass Valoriz. 13, 287–297 (2022). https://doi.org/10.1007/s12649-021-01514-x

    Article  Google Scholar 

  8. Wang, O., Liu, J., Cheng, Q., Guo, X., Wang, Y., Zhao, L., Zhou, F., Ji, B.: Effects of ferulic acid and γ-oryzanol on high-fat and high-fructose diet-induced metabolic syndrome in rats. PLoS ONE 10(2), e0118135 (2015). https://doi.org/10.1371/journal.pone.0118135

    Article  Google Scholar 

  9. Sharma, M., Khichar, M.K., Agrawal, R.D.: Isolation and identification of phytosterols from Bignonia venusta (L.). Asian J. Pharm. Clin. Res. 10(12), 247–251 (2017). https://doi.org/10.22159/ajpcr.2017.v10i12.21009

    Article  Google Scholar 

  10. Akihisa, T., Kojima, N., Katoh, N., Ichimura, Y., Suzuki, H., Fukatsu, M., Maranz, S., Masters, E.T.: Triterpene alcohol and fatty acid composition of shea nuts from seven African countries. J. Oleo Sci. 59(7), 351–360 (2010). https://doi.org/10.5650/jos.59.351

    Article  Google Scholar 

  11. Doering, T., Holtkötter, O., Schlotmann, K., Jassoy, C., Petersohn, D., Wadle, A., Waldmann-Laue, M.: Cutaneous restructuration by apple seed phytosterols: from DNA chip analysis to morphological alterations. Int. J. Cosmet. Sci. 27(2), 142 (2005). https://doi.org/10.1111/j.1467-2494.2005.00259_1.x

    Article  Google Scholar 

  12. Miras-Moreno, B., Sabater-Jara, A.B., Pedreño, M.A., Almagro, L.: Bioactivity of phytosterols and their production in plant in vitro cultures. J. Agric. Food Chem. 64(38), 7049–7058 (2016). https://doi.org/10.1021/acs.jafc.6b02345

    Article  Google Scholar 

  13. Global Market Insight. Natural ferulic acid market. https://www.gminsights.com/industry-analysis/natural-ferulic-acid-market (2019). Accessed 6 May 2023

  14. Global Market Insight. Phytosterols market. https://www.gminsights.com/industry-analysis/phytosterols-market (2021). Accessed 6 May 2023

  15. Alexandri, M., López-Gómez, J.P., Olszewska-Widdrat, A., Venus, J.: Valorising agro-industrial wastes within the circular bioeconomy concept: the case of defatted rice bran with emphasis on bioconversion strategies. Fermentation 6(2), 42 (2020). https://doi.org/10.3390/fermentation6020042

    Article  Google Scholar 

  16. Expert Market Research. Global rice bran oil market outlook. https://www.expertmarketresearch.com/reports/rice-bran-oil-market#:~:text=The%20global%20rice%20bran%20oil%20market%20attained%20a%20volume%20of,its%20health%20benefits%20among%20consumers (2022). Accessed 16 Dec 2022

  17. Chakrabarti, P.P., Jala, R.C.R.: Chapter 3—Processing technology of rice bran oil. In: Cheong, L.Z., Xu, X. (eds.) Rice bran and rice bran oil, pp. 55–95. AOCS Press, London (2019)

    Google Scholar 

  18. Kadoglidou, K., Kalaitzidis, A., Stavrakoudis, D., Mygdalia, A., Katsantonis, D.: A novel compost for rice cultivation developed by rice industrial by-products to serve circular economy. Agronomy 9(9), 553 (2019). https://doi.org/10.3390/agronomy9090553

    Article  Google Scholar 

  19. Korhonen, J., Honkasalo, A., Seppälä, J.: Circular economy: the concept and its limitations. Ecol. Econ. 143, 37–46 (2018). https://doi.org/10.1016/j.ecolecon.2017.06.041

    Article  Google Scholar 

  20. Meedam, A., Usaku, C., Daisuk, P., Shotipruk, A.: Comparative study on physicochemical hydrolysis methods for glycerides removal from rice bran acid oil for subsequent γ-oryzanol recovery. Biomass Convers. 12, 245–252 (2022). https://doi.org/10.1007/s13399-020-00775-1

    Article  Google Scholar 

  21. Ito, J., Sawada, K., Ogura, Y., Xinyi, F., Rahmania, H., Mohri, T., Kohyama, N., Kwon, E., Eitsuka, T., Hashimoto, H., Kuwahara, S., Miyazawa, T., Nakagawa, K.: Definitive evidence of the presence of 24-methylenecycloartanyl ferulate and 24-methylenecycloartanyl caffeate in barley. Sci. Rep. 9(1), 2572 (2019). https://doi.org/10.1038/s41598-019-48985-6

    Article  Google Scholar 

  22. Lerma-García, M.J., Herrero-Martínez, J.M., Simó-Alfonso, E.F., Mendonça, C.R.B., Ramis-Ramos, G.: Composition, industrial processing and applications of rice bran γ-oryzanol. Food Chem. 115(2), 389–404 (2009). https://doi.org/10.1016/j.foodchem.2009.01.063

    Article  Google Scholar 

  23. Sombutsuwan, P., Nakornsadet, A., Aryusuk, K., Akepratumchai, S., Jeyashoke, N., Lilitchan, S., Krisnangkura, K.: Recovery of γ-oryzanol from rice bran acid oil by an acid-base extraction method with the assistance of response surface methodology. J. Oleo Sci. 67(11), 1405–1415 (2018). https://doi.org/10.5650/jos.ess18073

    Article  Google Scholar 

  24. Zullaikah, S., Melwita, E., Ju, Y.H.: Isolation of oryzanol from crude rice bran oil. Bioresour. Technol. 100(1), 299–302 (2009). https://doi.org/10.1016/j.biortech.2008.06.008

    Article  Google Scholar 

  25. Ou, S., Luo, Y., Xue, F., Huang, C., Zhang, N., Liu, Z.: Seperation and purification of ferulic acid in alkaline-hydrolysate from sugarcane bagasse by activated charcoal adsorption/anion macroporous resin exchange chromatography. J. Food Eng. 78(4), 1298–1304 (2007). https://doi.org/10.1016/j.jfoodeng.2005.12.037

    Article  Google Scholar 

  26. Truong, H.T., Van Do, M., Huynh, L.D., Nguyen, L.T., Do, A.T., Le, T.T.X., Duong, H.P., Takenaka, N., Imamura, K., Maeda, Y.: Ultrasound-assisted, base-catalyzed, homogeneous reaction for ferulic acid production from γ-oryzanol. J. Chem. 2018, 3132747 (2018). https://doi.org/10.1155/2018/3132747

    Article  Google Scholar 

  27. Gadalkar, S.M., Rathod, V.K.: Pre-treatment of ferulic acid esterases immobilized on MNPs to enhance the extraction of ferulic acid from defatted rice bran in presence of ultrasound. Biocatal. Agric. Biotechnol. 10, 342–351 (2017). https://doi.org/10.1016/j.bcab.2017.03.016

    Article  Google Scholar 

  28. Truong, H.T., Van, M.D., Huynh, L.D., Nguyen, L.T., Tuan, A.D., Thanh, T.L.X., Phuoc, H.D., Takenaka, N., Imamura, K., Maeda, Y.: A method for ferulic acid production from rice bran oil soapstock using a homogenous system. Appl. Sci. 7(8), 796 (2017). https://doi.org/10.3390/app7080796

    Article  Google Scholar 

  29. Taniguchi, H., Nomura, E., Tsuno, T., Minami, S., Kato, K., Hayashi, C.: US Patent 5,288,902, 1994

  30. Blanchard, C.O., Sutterlin, W.R., Long, R.A.: WIPO (PCT) Patent WO2021/138549 A1, 2021

  31. Pojjanapornpun, S., Jiruttisakul, A., Chumsantea, S., Sombutsuwan, P., Nakornsadet, A., Krisnangkura, K., Aryusuk, K.: Effect of mobile phase composition on the separation of neutral lipids, γ-oryzanol and its saponified compounds on a 100-Å Phenogel column. In: The 3rd International Conference on Advanced Research in Applied Science and Engineering, Oxford, 2–4 July 2021. https://doi.org/10.33422/3rd.raseconf.2021.07.01

  32. Petrović, M., Jovanović, M., Lević, S., Nedović, V., Mitić-Ćulafić, D., Semren, T.Ž., Veljović, S.: Valorization potential of Plantago major L. solid waste remaining after industrial tincture production: insight into the chemical composition and bioactive properties. Waste Biomass Valoriz. 13, 1639–1651 (2022). https://doi.org/10.1007/s12649-021-01608-6

    Article  Google Scholar 

  33. Era, B., Floris, S., Sogos, V., Porcedda, C., Piras, A., Medda, R., Fais, A., Pintus, F.: Anti-aging potential of extracts from Washingtonia filifera seeds. Plants 10(1), 151 (2021). https://doi.org/10.3390/plants10010151

    Article  Google Scholar 

  34. Rumiyati, Jayasena, V., James, A.P.: Total phenolic and phytosterol compounds and the radical scavenging activity of germinated Australian sweet lupin flour. Plant Foods Hum. Nutr. 68(4), 352–357 (2013). https://doi.org/10.1007/s11130-013-0377-6

    Article  Google Scholar 

  35. Whangsomnuek, N., Mungmai, L., Mengamphan, K., Amornlerdpison, D.: Bioactive compounds of aqueous extracts of flower and leaf of Etlingera elatior (Jack) R.M.Sm. for cosmetic application. Maejo Int. J. Sci. Technol. 13, 196–208 (2019)

    Google Scholar 

  36. Alam, N., Yoon, K.N., Lee, K.R., Shin, P.G., Cheong, J.C., Yoo, Y.B., Shim, M.J., Lee, M.W., Lee, U.Y., Lee, T.S.: Antioxidant activities and tyrosinase inhibitory effects of different extracts from Pleurotus ostreatus fruiting bodies. Mycobiology 38, 295–301 (2010)

    Article  Google Scholar 

  37. Zakiah, K., Anwar, E., Nurhayati, T.: In-vitro evaluation of antioxidant activity and anti-collagenase activity of Thalassia hempricii as a potent ingredients for anti-wrinkle cosmetics. Pharmacogn. J. 10(4), 778–782 (2018). https://doi.org/10.5530/pj.2018.4.131

    Article  Google Scholar 

  38. Paiva, L.B.D., Goldbeck, R., Santos, W.D., Squina, F.M.: Ferulic acid and derivatives: molecules with potential application in the pharmaceutical field. Braz. J. Pharm. Sci. 49(3), 395–411 (2013). https://doi.org/10.1590/S1984-82502013000300002

    Article  Google Scholar 

  39. Peres, D.D.A., Sarruf, F.D., de Oliveira, C.A., Velasco, M.V.R., Baby, A.R.: Ferulic acid photoprotective properties in association with UV filters: multifunctional sunscreen with improved SPF and UVA-PF. J. Photochem. Photobiol. B Biol. 185, 46–49 (2018). https://doi.org/10.1016/j.jphotobiol.2018.05.026

    Article  Google Scholar 

  40. Surendran, G., McAteer, M., Zanchelli, P., Dhimitruka, I.: Assessment of hydroxycinnamic acids potential for use as multifunctional active ingredients in sunscreens, via a comparative UV spectroscopy analysis. J. Chem. Pharm. Res. 11, 37–44 (2019)

    Google Scholar 

  41. Mancuso, C., Santangelo, R.: Ferulic acid: pharmacological and toxicological aspects. Food Chem. Toxicol. 65, 185–195 (2014). https://doi.org/10.1016/j.fct.2013.12.024

    Article  Google Scholar 

  42. Zduńska, K., Dana, A., Kolodziejczak, A., Rotsztejn, H.: Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol. Physiol. 31(6), 332–336 (2018). https://doi.org/10.1159/000491755

    Article  Google Scholar 

  43. Hatice, B.: The effects of free radicals on aging process. Curr. Trends Biomed. Eng. Biosci. 13(5), 555871 (2018). https://doi.org/10.19080/CTBEB.2018.13.555871

    Article  Google Scholar 

  44. Costa, R., Santos, L.: Delivery systems for cosmetics—from manufacturing to the skin of natural antioxidants. Powder Technol. 322, 402–416 (2017). https://doi.org/10.1016/j.powtec.2017.07.086

    Article  Google Scholar 

  45. Naidoo, K., Birch-Machin, M.A.: Oxidative stress and ageing: the influence of environmental pollution, sunlight and diet on skin. Cosmetics 4(1), 4 (2017). https://doi.org/10.3390/cosmetics4010004

    Article  Google Scholar 

  46. Xu, Z., Godber, J.S.: Antioxidant activities of major components of γ-oryzanol from rice bran using a linoleic acid model. J. Am. Oil Chem. Soc. 78, 645–649 (2001). https://doi.org/10.1007/s11746-001-0320-1

    Article  Google Scholar 

  47. Takahashi, T., Miyazawa, M.: Tyrosinase inhibitory activities of cinnamic acid analogues. Pharmazie 65(12), 913–918 (2010). https://doi.org/10.1691/ph.2010.0654

    Article  Google Scholar 

  48. Miao, Z., Kayahara, H., Tadasa, K.: Synthesis and biological activities of ferulic acid–amino acid derivatives. Biosci. Biotechnol. Biochem. 61(3), 527–529 (1997). https://doi.org/10.1271/bbb.61.527

    Article  Google Scholar 

  49. Strzępek-Gomółka, M., Gaweł-Beben, K., Angelis, A., Antosiewicz, B., Sakipova, Z., Kozhanova, K., Głowniak, K., Kukula-Koch, W.: Identification of mushroom and murine tyrosinase inhibitors from Achillea biebersteinii Afan. extract. Molecules 26(4), 964 (2021). https://doi.org/10.3390/molecules26040964

    Article  Google Scholar 

  50. Maruyama, H., Kawakami, F., Lwin, T.T., Imai, M., Shamsa, F.: Biochemical characterization of ferulic acid and caffeic acid which effectively inhibit melanin synthesis via different mechanisms in B16 melanoma cells. Biol. Pharm. Bull. 41(5), 806–810 (2018). https://doi.org/10.1248/bpb.b17-00892

    Article  Google Scholar 

  51. Eun, C.H., Kang, M.S., Kim, I.J.: Elastase/collagenase inhibition compositions of Citrus unshiu and its association with phenolic content and anti-oxidant activity. Appl. Sci. 10(14), 4838 (2020). https://doi.org/10.3390/app10144838

    Article  Google Scholar 

  52. Laronha, H., Caldeira, J.: Structure and function of human matrix metalloproteinases. Cells 9(5), 1076 (2020). https://doi.org/10.3390/cells9051076

    Article  Google Scholar 

  53. Utami, S., Sachrowardi, Q.R., Damayanti, N.A., Wardhana, A., Syarif, I., Nafik, S., Arrahman, B.C., Kusuma, H.S.W., Widowati, W.: Antioxidants, anticollagenase and antielastase potentials of ethanolic extract of ripe sesoot (Garcinia picrorrhiza Miq.) fruit as antiaging. J. Herbmed Pharmacol. 7(2), 88–93 (2018). https://doi.org/10.15171/jhp.2018.15

    Article  Google Scholar 

  54. Kusano, A., Seyama, Y., Nagai, M., Shibano, M., Kusano, G.: Effects of fukinolic acid and cimicifugic acids from Cimicifuga species on collagenolytic activity. Biol. Pharm. Bull. 24(10), 1198–1201 (2001). https://doi.org/10.1248/bpb.24.1198

    Article  Google Scholar 

  55. Bin Sayeed, M.S., Karim, S.M.R., Sharmin, T., Morshed, M.M.: Critical analysis on characterization, systemic effect, and therapeutic potential of beta-sitosterol: a plant-derived orphan phytosterol. Medicines 3(4), 29 (2016). https://doi.org/10.3390/medicines3040029

    Article  Google Scholar 

  56. Zhang, J., Abe, M., Akihisa, T.: Anti-inflammatory and other bioactivities of triterpene esters in shea butter. Acc. Mater. Surf. Res. 2, 127–136 (2017)

    Google Scholar 

  57. Fraterrigo Garofalo, S., Tommasi, T., Fino, D.: A short review of green extraction technologies for rice bran oil. Biomass Convers. Biorefin. 11, 569–587 (2021). https://doi.org/10.1007/s13399-020-00846-3

    Article  Google Scholar 

  58. Sahini, M.G., Mutegoa, E.: Extraction, phytochemistry, nutritional, and therapeutical potentials of rice bran oil: a review. Phytomed. Plus 3(2), 100453 (2023). https://doi.org/10.1016/j.phyplu.2023.100453

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Surin Bran Oil Co., Ltd. (Surin, Thailand) for supplying rice bran acid oil.

Funding

The work was financial supported by King Mongkut’s University of Technology Thonburi (KMUTT) through the Basic Research Fund: for the fiscal year 2024, the KMUTT Research Center of Excellence Project to Lipid Technology Research Group and the KMUTT Postdoctoral Fellowship to Nattawut Whangsomnuek.

Author information

Authors and Affiliations

Authors

Contributions

NW contributed with data curation, investigation, methodology, writing—original draft. PS contributed with methodology and discussion. AN contributed with methodology and validation, DA contributed with review, methodology and discussion. LM contributed with review and discussion. KA contributed with conceptualization, project administration, supervision, funding acquisition, resources, writing—review & editing. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Kornkanok Aryusuk.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whangsomnuek, N., Sombutsuwan, P., Nakornsadet, A. et al. Valorization of Industrial Byproduct-Rice Bran Acid Oil: Direct Extraction and Evaluation of Ferulic Acid and Phytosterols/Triterpene Alcohols for Cosmetic Applications. Waste Biomass Valor 15, 3017–3029 (2024). https://doi.org/10.1007/s12649-023-02357-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02357-4

Keywords

Navigation