Skip to main content
Log in

Enhanced Anaerobic Mono-digestion and Co-digestion of Crop Residues by NaOH Alkali Pre-treatment: Digestion Performance and Microbial Community Dynamics

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The main objective of the study was to determine the effect of different dosages of NaOH alkali pre-treatment on the lignocellulosic structures and the methane production of crops’ residues. In this regard, NaOH pre-treatment was implemented with different dosages on three different crops’ residues: wheat, rye, and rice straws. Substrates were soaked into NaOH solutions at different dosages with solid-to-liquid ratios of 100 and 200 gTS/L to investigate both conditions. The anaerobic digestion process was conducted using AMPTS II under mesophilic conditions. By 8% NaOH pre-treatment dosage, the reduction of hemicellulose and lignin was 81 and 62% for rice straw, 86 and 69% for wheat straw, 80 and 74% for rye straw, respectively. The concentrations of sCOD in the liquid fraction after pre-treatment were regarded as 3 times higher than in untreated samples. Pre-treatment with 8% NaOH dosage increased the methane yield of rice, wheat, and rye straws by 55, 40, and 46% respectively. Samples from digesters that produced the highest methane yield were chosen for further molecular analysis. Compared to untreated digesters, 16S rRNA gene amplicon sequencing revealed more diverse microbial communities in NaOH pre-treated digesters.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The microbial data sets presented in this study can be found in online repositories. The raw reads were deposited in the NCBI under the BioProject accession number PRJNA970686 including SRX20359977, SRX20359978, SRX20359979, SRX20359980, SRX20359981, SRX20359982, SRX20359983, SRX20359984, SRX20359985.

Abbreviations

AD:

Anaerobic digestion

sCOD:

Soluble chemical oxygen demand

TS:

Total solids

TKN:

Total Kjeldahl nitrogen

VFA:

Volatile fatty acids

VS:

Volatile solids

References

  1. Hamelinck, C.N., Van Hooijdonk, G., Faaij, A.P.C.: Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28, 384–410 (2005). https://doi.org/10.1016/J.BIOMBIOE.2004.09.002

    Article  Google Scholar 

  2. Chandra, R., Takeuchi, H., Hasegawa, T., Kumar, R.: Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy 43, 273–282 (2012). https://doi.org/10.1016/J.ENERGY.2012.04.029

    Article  Google Scholar 

  3. De Baere, L.: Anaerobic digestion of solid waste: state-of-the-art. Water Sci. Technol. 41, 283–290 (2000)

    Article  Google Scholar 

  4. Teghammar, A.: Biogas production from lignocelluloses : pretreatment, substrate characterization, co-digestion and economic evaluation. PhD dissertation, Chalmers Tekniska Högskola (2013). https://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-3654

  5. Croce, S., Wei, Q., D’Imporzano, G., Dong, R., Adani, F.: Anaerobic digestion of straw and corn stover: The effect of biological process optimization and pre-treatment on total bio-methane yield and energy performance. Biotechnol. Adv. 34, 1289–1304 (2016). https://doi.org/10.1016/J.BIOTECHADV.2016.09.004

    Article  Google Scholar 

  6. Dahmen, N., Lewandowski, I., Zibek, S., Weidtmann, A.: Integrated lignocellulosic value chains in a growing bioeconomy: status quo and perspectives. GCB Bioenergy 11, 107–117 (2019). https://doi.org/10.1111/gcbb.12586

    Article  Google Scholar 

  7. Kratky, L., Jirout, T., Nalezenec, J.: Lab-scale technology for biogas production from lignocellulose wastes. Acta Polytech. 52, 54–59 (2012). https://doi.org/10.14311/1552

    Article  Google Scholar 

  8. Ahmad, F., Silva, E.L., Varesche, M.B.A.: Hydrothermal processing of biomass for anaerobic digestion—a review. Renew. Sustain. Energy Rev. 98, 108–124 (2018). https://doi.org/10.1016/J.RSER.2018.09.008

    Article  Google Scholar 

  9. Sambusiti, C., Ficara, E., Malpei, F., Steyer, J.P., Carrère, H.: Effect of sodium hydroxide pretreatment on physical, chemical characteristics and methane production of five varieties of sorghum. Energy 55, 449–456 (2013). https://doi.org/10.1016/J.ENERGY.2013.04.025

    Article  Google Scholar 

  10. Hendriks, A.T.W.M., Zeeman, G.: Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100, 10–18 (2009). https://doi.org/10.1016/J.BIORTECH.2008.05.027

    Article  Google Scholar 

  11. Bolado-Rodríguez, S., Toquero, C., Martín-Juárez, J., Travaini, R., García-Encina, P.A.: Effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the biochemical methane potential and kinetics of the anaerobic digestion of wheat straw and sugarcane bagasse. Bioresour. Technol. 201, 182–190 (2016). https://doi.org/10.1016/J.BIORTECH.2015.11.047

    Article  Google Scholar 

  12. Zhu, J., Wan, C., Li, Y.: Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment. Bioresour. Technol. 101, 7523–7528 (2010). https://doi.org/10.1016/J.BIORTECH.2010.04.060

    Article  Google Scholar 

  13. Yang, D., Zheng, Y., Zhang, R.: Alkali pretreatment of rice straw for increasing the biodegradability. American Society of Agricultural and Biological Engineers Annual International Meeting 2009, ASABE 2009 (2009). https://doi.org/10.13031/2013.26933

  14. He, Y., Pang, Y., Li, X., Liu, Y., Li, R., Zheng, M.: Investigation on the changes of main compositions and extractives of rice straw pretreated with sodium hydroxide for biogas production. Energy Fuels 23, 2220–2224 (2009). https://doi.org/10.1021/ef8007486

    Article  Google Scholar 

  15. Sambusiti, C., Ficara, E., Rollini, M., Manzoni, M., Malpei, F.: Sodium hydroxide pretreatment of ensiled sorghum forage and wheat straw to increase methane production. Water Sci. Technol. 66, 2447–2452 (2012). https://doi.org/10.2166/wst.2012.480

    Article  Google Scholar 

  16. Werner, J.J., Knights, D., Garcia, M.L., Scalfone, N.B., Smith, S., Yarasheski, K., Cummings, T.A., Beers, A.R., Knight, R., Angenent, L.T.: Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proc. Natl. Acad. Sci. USA 108, 4158–4163 (2011). https://doi.org/10.1073/pnas.1015676108

    Article  Google Scholar 

  17. Ozbayram, E.G., Kleinsteuber, S., Nikolausz, M., Ince, B., Ince, O.: Bioaugmentation of anaerobic digesters treating lignocellulosic feedstock by enriched microbial consortia. Eng. Life Sci. 18, 440–446 (2018). https://doi.org/10.1002/elsc.201700199

    Article  Google Scholar 

  18. American Public Health Association: American water works association, water environment federation. In: Lipps, W., Braun-Howland, E.B., Baxter, T.E. (eds.) Standard methods for the examination of water and wastewater, 24th edn. APHA Press, Washington DC (2023)

    Google Scholar 

  19. Goering, H.K., Van Soest, P.J.: Forage fiber analysis (Apparatus reagents, Procedures and some applications). Agriculture Handbook, United States Department of Agriculture, Washington DC (1970)

    Google Scholar 

  20. Raposo, F., Borja, R., Martín, M.A., Martín, A., de la Rubia, M.A., Rincón, B.: Influence of inoculum–substrate ratio on the anaerobic digestion of sunflower oil cake in batch mode: Process stability and kinetic evaluation. Chem. Eng. J. 149, 70–77 (2009). https://doi.org/10.1016/J.CEJ.2008.10.001

    Article  Google Scholar 

  21. Labatut, R.A., Angenent, L.T., Scott, N.R.: Biochemical methane potential and biodegradability of complex organic substrates. Bioresour. Technol. 102, 2255–2264 (2011). https://doi.org/10.1016/j.biortech.2010.10.035

    Article  Google Scholar 

  22. Akyol, Ç., Ozbayram, E.G., Ince, O., Kleinsteuber, S., Ince, B.: Anaerobic co-digestion of cow manure and barley: effect of cow manure to barley ratio on methane production and digestion stability. Environ. Prog. Sustain. Energy 35, 589–595 (2016). https://doi.org/10.1002/ep.12250

    Article  Google Scholar 

  23. Liu, X., Zicari, S.M., Liu, G., Li, Y., Zhang, R.: Pretreatment of wheat straw with potassium hydroxide for increasing enzymatic and microbial degradability. Bioresour. Technol. 185, 150–157 (2015). https://doi.org/10.1016/J.BIORTECH.2015.02.047

    Article  Google Scholar 

  24. Rabelo, S.C., Carrere, H., Maciel Filho, R., Costa, A.C.: Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Bioresour. Technol. 102, 7887–7895 (2011). https://doi.org/10.1016/J.BIORTECH.2011.05.081

    Article  Google Scholar 

  25. Chufo, A., Yuan, H., Zou, D., Pang, Y., Li, X.: Biomethane production and physicochemical characterization of anaerobically digested teff (Eragrostis tef) straw pretreated by sodium hydroxide. Bioresour. Technol. 181, 214–219 (2015). https://doi.org/10.1016/J.BIORTECH.2015.01.054

    Article  Google Scholar 

  26. Mussoline, W., Esposito, G., Giordano, A., Lens, P.: The anaerobic digestion of rice straw: a review. Crit. Rev. Environ. Sci. Technol. 43, 895–915 (2013). https://doi.org/10.1080/10643389.2011.627018

    Article  Google Scholar 

  27. Piyasa Takas Fiyatı (PTF). EPIAS Seffaflik Platformu. https://seffaflik.epias.com.tr/transparency/piyasalar/gop/ptf.xhtml (2023). Accessed 16 October 2023.

  28. Caustic Soda price index. Business Analytiq. https://businessanalytiq.com/procurementanalytics/index/caustic-soda-price-index/ (2023). Accessed 16 October 2023.

  29. Yang, Y., Wang, M., Yan, S., Yong, X., Zhang, X., Awasthi, M.K., Xi, Y., Zhou, J.: Effects of hydrochar and biogas slurry reflux on methane production by mixed anaerobic digestion of cow manure and corn straw. Chemosphere 310, 136876 (2023). https://doi.org/10.1016/J.CHEMOSPHERE.2022.136876

    Article  Google Scholar 

  30. Harirchi, S., Wainaina, S., Sar, T., Nojoumi, S.A., Parchami, M., Parchami, M., Varjani, S., Khanal, S.K., Wong, J., Awasthi, M.K., Taherzadeh, M.J.: Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): a review. Bioengineered 13, 6521–6557 (2022). https://doi.org/10.1080/21655979.2022.2035986

  31. Amin, F.R., Khalid, H., El-Mashad, H.M., Chen, C., Liu, G., Zhang, R.: Functions of bacteria and archaea participating in the bioconversion of organic waste for methane production. Sci. Total. Environ. 763, 143007 (2021). https://doi.org/10.1016/J.SCITOTENV.2020.143007

    Article  Google Scholar 

  32. Numberger, D., Ganzert, L., Zoccarato, L., Mühldorfer, K., Sauer, S., Grossart, H.P., Greenwood, A.D.: Characterization of bacterial communities in wastewater with enhanced taxonomic resolution by full-length 16S rRNA sequencing. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-46015-z

    Article  Google Scholar 

  33. Yan, Y., Li, T., Zhou, L., Tian, L., Yan, X., Liao, C., Huang, Z., Li, N., Wang, X.: Spatially heterogeneous propionate conversion towards electricity in bioelectrochemical systems. J. Power. Sources 449, 227557 (2020). https://doi.org/10.1016/J.JPOWSOUR.2019.227557

    Article  Google Scholar 

  34. Huang, H., Biswal, B.K., Chen, G.H., Wu, D.: Sulfidogenic anaerobic digestion of sulfate-laden waste activated sludge: Evaluation on reactor performance and dynamics of microbial community. Bioresour. Technol. 297, 122396 (2020). https://doi.org/10.1016/J.BIORTECH.2019.122396

    Article  Google Scholar 

  35. Puengrang, P., Suraraksa, B., Prommeenate, P., Boonapatcharoen, N., Cheevadhanarak, S., Tanticharoen, M., Kusonmano, K.: Diverse microbial community profiles of propionate-degrading cultures derived from different sludge sources of anaerobic wastewater treatment plants. Microorganisms (2020). https://doi.org/10.3390/microorganisms8020277

    Article  Google Scholar 

  36. Wang, X., Li, Z., Zhou, X., Wang, Q., Wu, Y., Saino, M., Bai, X.: Study on the bio-methane yield and microbial community structure in enzyme enhanced anaerobic co-digestion of cow manure and corn straw. Bioresour. Technol. 219, 150–157 (2016). https://doi.org/10.1016/J.BIORTECH.2016.07.116

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by Boğaziçi University Research Fund Project (Project code 21YP1).

Funding

Boğaziçi Üniversitesi, 21YP1, Bahar Ince

Author information

Authors and Affiliations

Authors

Contributions

MM: investigation; data curation; reactors operation; writing—original draft. OI: supervision; resources; project planning. OU: reactor control; data curation; visualization. EGO: thesis co-advisor; molecular analysis. HIM: molecular data analysis. Bİ: supervision; project administration; funding acquisition; writing—review & editing.

Corresponding author

Correspondence to Omer Uzun.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansour, M., Ince, O., Uzun, O. et al. Enhanced Anaerobic Mono-digestion and Co-digestion of Crop Residues by NaOH Alkali Pre-treatment: Digestion Performance and Microbial Community Dynamics. Waste Biomass Valor 15, 3003–3015 (2024). https://doi.org/10.1007/s12649-023-02350-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02350-x

Keywords

Navigation