Skip to main content
Log in

Porous Graphitic Carbon from Coconut Coir Biochar Developed by Ni–KOH Single-Pot Graphitization Process for Lithium-Ion Battery Anodes

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Graphitic carbons derived from coconut waste have emerged as interesting candidates for sustainable lithium-ion battery (LIB) anodes. As the demand for high-capacity LIBs, there is a pressing need for graphitic carbon structures that can deliver good performance. However, obtaining good graphitic carbon performance from coconut waste-based material through efficient carbon conversion technology remains a challenge. Hence, we demonstrate that Ni–KOH plays a significant role in the single-pot graphitization process, which effectively generates porous graphitic carbon (PGC) structures. This Ni–KOH single-pot technique reduces the initial formation temperature of graphitic nanostructure from 1200 °C to 800 °C and simultaneously increases the graphitization degree of the carbon product. The resulting sample at 1000 °C (1000-ANi-KOH) exhibits a remarkable reversible capacity of 451.83 mAh/g at 0.05 C when used as LIB anodes. The synergistic effect of a high-order graphitic structure (1.66 IG/ID ratio) and a high BET surface area (599.414 m2/g) contributes to this excellent performance. By providing additional active sites for Li+ adsorption and storage, the porous structure supports high-capacity performance. Finally, these findings point to a realistic strategy for converting Indonesian coconut coir waste into a sustainable carbon source for energy storage materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Darjazi, H., Bottoni, L., Moazami, H.R., Rezvani, S.J., Balducci, L., Sbrascini, L., Staffolani, A., Tombesi, A., Nobili, F.: From waste to resources: transforming olive leaves to hard carbon as sustainable and versatile electrode material for Li/Na-ion batteries and supercapacitors. Mater. Today Sustain. 21, 100313 (2023). https://doi.org/10.1016/j.mtsust.2022.100313

    Article  Google Scholar 

  2. Haluska, O., Meščeriakovė, S.M., Murashko, K., Meščeriakovas, A., Kalidas, N., Rantanen, J., Liu, L., Salami, A., Lappalainen, R., Lähde, A., Lehto, V.P., Riikonen, J.: Production of graphitic carbons from plant-based SiC/C nanocomposites for Li-ion batteries. Mater. Chem. Phys. (2023). https://doi.org/10.1016/j.matchemphys.2022.127286

    Article  Google Scholar 

  3. Niu, H., Wang, L., Guan, P., Zhang, N., Yan, C., Ding, M., Guo, X., Huang, T., Hu, X.: Recent advances in application of ionic liquids in electrolyte of lithium ion batteries. J. Energy Storage. 40, 102659 (2021). https://doi.org/10.1016/j.est.2021.102659

    Article  Google Scholar 

  4. Tian, Y., Lai, R., Li, X., Tian, J.: State-of-charge estimation for lithium-ion batteries based on attentional sequence-to-sequence architecture. J. Energy Storage. 62, 106836 (2023). https://doi.org/10.1016/j.est.2023.106836

    Article  Google Scholar 

  5. Costa, C.M., Barbosa, J.C., Gonçalves, R., Castro, H., Campo, F.J.D., Lanceros-Méndez, S.: Recycling and environmental issues of lithium-ion batteries: advances, challenges and opportunities. Energy Storage Mater. 37, 433–465 (2021). https://doi.org/10.1016/j.ensm.2021.02.032

    Article  Google Scholar 

  6. Ali, H., Khan, H.A., Pecht, M.G.: Circular economy of Li batteries: technologies and trends. J. Energy Storage 40, 102690 (2021). https://doi.org/10.1016/j.est.2021.102690

    Article  Google Scholar 

  7. Shi, M., Song, C., Tai, Z., Zou, K., Duan, Y., Dai, X., Sun, J.: Coal-derived synthetic graphite with high specific capacity and excellent cyclic stability as anode material for lithium-ion batteries. Fuel 292, 120250 (2021). https://doi.org/10.1016/j.fuel.2021.120250

    Article  Google Scholar 

  8. Han, L., Zhu, X., Yang, F., Liu, Q., Jia, X.: Eco-conversion of coal into a nonporous graphite for high-performance anodes of lithium-ion batteries. Powder Technol. 382, 40–47 (2021). https://doi.org/10.1016/j.powtec.2020.12.052

    Article  Google Scholar 

  9. R. Pell, P. Whattoff, J. Lindsay, Climate Impact of Graphite Production, Minviro. (2021).

  10. Beyssac, O., Rumble, D.: Graphitic carbon: A ubiquitous, diverse, and useful geomaterial. Elements 10, 415–420 (2014). https://doi.org/10.2113/gselements.10.6.415

    Article  Google Scholar 

  11. Directorate General of Estates, Statistical of National Leading Estate Crops Commodity 2020–2022, Secr. Dir. Gen. Estates. (2022) 1–572.

  12. Sesuk, T., Tammawat, P., Jivaganont, P., Somton, K., Limthongkul, P., Kobsiriphat, W.: Activated carbon derived from coconut coir pith as high performance supercapacitor electrode material. J. Energy Storage. 25, 100910 (2019). https://doi.org/10.1016/j.est.2019.100910

    Article  Google Scholar 

  13. Din, N.A.S., Lim, S.J., Maskat, M.Y., Zaini, N.A.M.: Bioconversion of coconut husk fibre through biorefinery process of alkaline pretreatment and enzymatic hydrolysis. Biomass Convers. Biorefinery. 11, 815–826 (2021). https://doi.org/10.1007/s13399-020-00895-8

    Article  Google Scholar 

  14. Taherian, R., Matboo Ghorbani, M., Kiahosseini, S.R.: A new method for optimal fabrication of carbon composite paper as gas diffusion layer used in proton exchange membrane of fuel cells. J. Electroanal. Chem. 815, 90–97 (2018). https://doi.org/10.1016/j.jelechem.2018.03.009

    Article  Google Scholar 

  15. Destyorini, F., Yudianti, R., Irmawati, Y., Hardiansyah, A., Hsu, Y.I., Uyama, H.: Temperature driven structural transition in the nickel-based catalytic graphitization of coconut coir. Diam. Relat. Mater. 117, 108443 (2021). https://doi.org/10.1016/j.diamond.2021.108443

    Article  Google Scholar 

  16. Deng, J., Xiong, T., Wang, H., Zheng, A., Wang, Y.: Effects of cellulose, hemicellulose, and lignin on the structure and morphology of porous carbons. ACS Sustain. Chem. Eng. 4, 3750–3756 (2016). https://doi.org/10.1021/acssuschemeng.6b00388

    Article  Google Scholar 

  17. Li, S., Song, W.L., Han, X., Cui, Q., Li Zhu, Y., Jiao, S.: Low-temperature graphitization of lignin via Co-assisted electrolysis in molten salt. Green Energ. Environ. (2023). https://doi.org/10.1016/j.gee.2023.04.006

    Article  Google Scholar 

  18. E.I. Akpan, 2019 Sustainable Lignin for Carbon Fibers: Principles, Techniques, and Applications. https://doi.org/10.1007/978-3-030-18792-7.

  19. Zhang, H., Yang, Y., Ren, D., Wang, L., He, X.: Graphite as anode materials: fundamental mechanism, recent progress and advances. Energy Storage Mater. 36, 147–170 (2021). https://doi.org/10.1016/j.ensm.2020.12.027

    Article  Google Scholar 

  20. Destyorini, F., Amalia, W.C., Irmawati, Y., Hardiansyah, A., Priyono, S., Aulia, F., Oktaviano, H.S., Hsu, Y.I., Yudianti, R., Uyama, H.: High graphitic carbon derived from coconut coir waste by promoting potassium hydroxide in the catalytic graphitization process for lithium-ion battery anodes. Energy Fuels 36, 5444–5455 (2022). https://doi.org/10.1021/acs.energyfuels.2c00632

    Article  Google Scholar 

  21. Yu, K., Zhang, Z., Liang, J., Liang, C.: Natural biomass-derived porous carbons from buckwheat hulls used as anode for lithium-ion batteries. Diam. Relat. Mater. 119(108553), 1–11 (2021). https://doi.org/10.1016/j.diamond.2021.108553

    Article  Google Scholar 

  22. Boonprachai, R., Autthawong, T., Namsar, O., Yodbunork, C., Yodying, W., Sarakonsri, T.: Natural porous carbon derived from popped rice as anode materials for lithium-ion batteries. Crystals 12, 1–15 (2022). https://doi.org/10.3390/cryst12020223

    Article  Google Scholar 

  23. Barnakov, C.N., Khokhlova, G.P., Popova, A.N., Sozinov, S.A., Ismagilov, Z.R.: XRD characterization of the structure of graphites and carbon materials obtained by the low-temperature graphitization of coal tar pitch. Eurasian Chem. J. 17, 87–93 (2015). https://doi.org/10.18321/ectj198

    Article  Google Scholar 

  24. Smith, M.W., Dallmeyer, I., Johnson, T.J., Brauer, C.S., McEwen, J.S., Espinal, J.F., Garcia-Perez, M.: Structural analysis of char by Raman spectroscopy: improving band assignments through computational calculations from first principles. Carbon N. Y. 100, 678–692 (2016). https://doi.org/10.1016/j.carbon.2016.01.031

    Article  Google Scholar 

  25. Schuepfer, D.B., Badaczewski, F., Guerra-Castro, J.M., Hofmann, D.M., Heiliger, C., Smarsly, B., Klar, P.J.: Assessing the structural properties of graphitic and non-graphitic carbons by Raman spectroscopy. Carbon N. Y. 161, 359–372 (2020). https://doi.org/10.1016/j.carbon.2019.12.094

    Article  Google Scholar 

  26. Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 632–645 (2000). https://doi.org/10.1007/BF02543692

    Article  Google Scholar 

  27. Dennison, J.R., Holtz, M.: Raman spectroscopy of carbon materials. Spectroscopy 11, 38–46 (1996)

    Google Scholar 

  28. Hu, C., Sedghi, S., Silvestre-albero, A., Andersson, G.G., Sharma, A., Pendleton, P., Rodrı, F., Biggs, M.J.: Raman spectroscopy study of the transformation of the carbonaceous skeleton of a polymer-based nanoporous carbon along the thermal annealing pathway. Carbon N. Y. 85, 147–158 (2015). https://doi.org/10.1016/j.carbon.2014.12.098

    Article  Google Scholar 

  29. Eom, Y., Son, S.M., Kim, Y.E., Lee, J.E., Hwang, S.H., Chae, H.G.: Structure evolution mechanism of highly ordered graphite during carbonization of cellulose nanocrystals. Carbon N. Y. 150, 142–152 (2019). https://doi.org/10.1016/j.carbon.2019.05.007

    Article  Google Scholar 

  30. Zhang, S., Liu, Q., Zhang, H., Ma, R., Li, K., Wu, Y., Teppen, B.J.: Structural order evaluation and structural evolution of coal derived natural graphite during graphitization. Carbon N. Y. 157, 714–723 (2020). https://doi.org/10.1016/j.carbon.2019.10.104

    Article  Google Scholar 

  31. Sevilla, M., Fuertes, A.B.: Graphitic carbon nanostructures from cellulose. Chem. Phys. Lett. 490, 63–68 (2010). https://doi.org/10.1016/j.cplett.2010.03.011

    Article  Google Scholar 

  32. Fujimoto, A., Yamada, Y., Koinuma, M., Sato, S.: Origins of sp3C peaks in C1s X-ray photoelectron spectra of carbon materials. Anal. Chem. 88, 6110–6114 (2016). https://doi.org/10.1021/acs.analchem.6b01327

    Article  Google Scholar 

  33. Zhang, X., Zhang, K., Li, H., Wang, Q., Jin, L., Cao, Q.: Synthesis of porous graphitic carbon from biomass by one-step method And its role in the electrode for supercapacitor. J. Appl. Electrochem. 48, 415–426 (2018). https://doi.org/10.1007/s10800-018-1170-x

    Article  Google Scholar 

  34. Li, S., Harris, S., Anandhi, A., Chen, G.: Predicting biochar properties and functions based on feedstock and pyrolysis temperature: a review and data syntheses. J. Clean. Prod. 215, 890–902 (2019). https://doi.org/10.1016/j.jclepro.2019.01.106

    Article  Google Scholar 

  35. Smith, M., Scudiero, L., Espinal, J., McEwen, J.S., Garcia-Perez, M.: Improving the deconvolution and interpretation of XPS spectra from chars by ab initio calculations. Carbon N. Y. 110, 155–171 (2016). https://doi.org/10.1016/j.carbon.2016.09.012

    Article  Google Scholar 

  36. Liu, X., Tao, H., Tang, C., Yang, X.: Anthracite-derived carbon as superior anode for lithium/potassium-ion batteries. Chem. Eng. Sci. 248, 117200 (2022). https://doi.org/10.1016/j.ces.2021.117200

    Article  Google Scholar 

  37. Lua, A.C., Yang, T.: Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell. J. Colloid Interface Sci. 274, 594–601 (2004). https://doi.org/10.1016/j.jcis.2003.10.001

    Article  Google Scholar 

  38. Gong, Y., Li, D., Luo, C., Fu, Q., Pan, C.: Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem. 19, 4132–4140 (2017). https://doi.org/10.1039/c7gc01681f

    Article  Google Scholar 

  39. McNamara, K.W., Ayyappan, P., Rajagopalan, R., Chen, J.G., Foley, H.C.: Localized crystallization of polyfurfuryl alcohol derived carbon by alkali metals. Carbon N. Y. 56, 109–120 (2013). https://doi.org/10.1016/j.carbon.2012.12.077

    Article  Google Scholar 

  40. Liu, K., Zhang, J., Ding, R., Zheng, X., Yang, T., Wang, C., Chen, M.: Potassium-assisted carbonization of pyrrole to prepare nanorod-structured graphitic carbon with a high surface area for high-rate supercapacitors. Carbon N. Y. 155, 326–333 (2019). https://doi.org/10.1016/j.carbon.2019.09.005

    Article  Google Scholar 

  41. Raj, K.G., Joy, P.A.: Role of localized graphitization on the electrical and magnetic properties of activated carbon. J. Am. Ceram. Soc. 100, 5151–5161 (2017). https://doi.org/10.1111/jace.15035

    Article  Google Scholar 

  42. C. Chen, K. Sun, A. Wang, S. Wang, J. Jiang, Catalytic graphitization of cellulose using nickel as catalyst, BioResources. 13 (2018) 3165–3176. https://doi.org/10.15376/biores.13.2.3165-3176.

  43. Yan, Q., Li, J., Zhang, X., Hassan, E.B., Wang, C., Zhang, J., Cai, Z.: Catalytic graphitization of kraft lignin to graphene-based structures with four different transitional metals. J. Nanoparticle Res. 20, 1–20 (2018). https://doi.org/10.1007/s11051-018-4317-0

    Article  Google Scholar 

  44. Gomez-Martin, A., Martinez-Fernandez, J., Ruttert, M., Heckmann, A., Winter, M., Placke, T., Ramirez-Rico, J.: Iron-catalyzed graphitic carbon materials from biomass resources as anodes for lithium-ion batteries. Chemsuschem 11, 2776–2787 (2018). https://doi.org/10.1002/cssc.201800831

    Article  Google Scholar 

  45. Li, S.S., Wang, J.K., Zhu, Q., Zhao, X.W., Zhang, H.J.: Fabrication of graphitic carbon spheres via a hydrothermal carbonization combined catalytic graphitization method using cobalt as catalysts. Solid State Phenom. 281, 807–812 (2018). https://doi.org/10.4028/www.scientific.net/SSP.281.807

    Article  Google Scholar 

  46. Gomez-Martin, A., Gutierrez-Pardo, A., Martinez-Fernandez, J., Ramirez-Rico, J.: Binder-free supercapacitor electrodes: optimization of monolithic graphitized carbons by reflux acid treatment. Fuel Process. Technol. 199, 106279 (2020). https://doi.org/10.1016/j.fuproc.2019.106279

    Article  Google Scholar 

  47. Illa, M.P., Sharma, C.S., Khandelwal, M.: Catalytic graphitization of bacterial cellulose–derived carbon nanofibers for stable and enhanced anodic performance of lithium-ion batteries. Mater. Today Chem. 20, 100439 (2021). https://doi.org/10.1016/j.mtchem.2021.100439

    Article  Google Scholar 

  48. Singh, G., Lee, J., Bahadur, R., Karakoti, A., Yi, J., Vinu, A.: Highly graphitized porous biocarbon nanosheets with tunable Micro-Meso interfaces and enhanced layer spacing for CO2 capture and LIBs. Chem. Eng. J. 433, 134464 (2022). https://doi.org/10.1016/j.cej.2021.134464

    Article  Google Scholar 

  49. Wang, K., Cao, Y., Wang, X., Kharel, P.R., Gibbons, W., Luo, B., Gu, Z., Fan, Q., Metzger, L.: Nickel catalytic graphitized porous carbon as electrode material for high performance supercapacitors. Energy 101, 9–15 (2016). https://doi.org/10.1016/j.energy.2016.01.059

    Article  Google Scholar 

  50. Li, J., Zhang, Z., Wang, Z., Cao, Q., Guo, F., Cao, Q.: Low temperature graphitization and electrochemical properties of porous carbon catalyzed with bimetal Ni-Mo. Diam. Relat. Mater. 123, 108862 (2022). https://doi.org/10.1016/j.diamond.2022.108862

    Article  Google Scholar 

  51. Liao, H., Zhong, L., Zeng, H., Xiao, Y., Cheng, B., Lei, S.: A dual-acetate synchronous catalysis-activation strategy towards regulable porous graphitic carbon for high-energy supercapacitor with acetate water-in-salt electrolyte. Carbon N. Y. 213, 118305 (2023). https://doi.org/10.1016/j.carbon.2023.118305

    Article  Google Scholar 

  52. Mishra, S.K., Kanungo, S.B.: Thermal dehydration and decomposition of nickel chloride hydrate (NiCl2·xH2O). J. Therm. Anal. 38, 2417–2436 (1992). https://doi.org/10.1007/BF01974621

    Article  Google Scholar 

  53. Rastegar, H., Mansorizadeh, E.: In situ formed nano-Ni catalytic effect on graphitization of phenolic resin (thermodynamic and microstructure investigation). Carbon Lett. 32, 835–848 (2022). https://doi.org/10.1007/s42823-022-00318-w

    Article  Google Scholar 

  54. Anton, R.: On the reaction kinetics of Ni with amorphous carbon. Carbon N. Y. 46, 656–662 (2008). https://doi.org/10.1016/j.carbon.2008.01.021

    Article  Google Scholar 

  55. Khoshk Rish, S., Tahmasebi, A., Wang, R., Dou, J., Yu, J.: Formation mechanism of nano graphitic structures during microwave catalytic graphitization of activated carbon. Diam. Relat. Mater. 120, 108699 (2021). https://doi.org/10.1016/j.diamond.2021.108699

    Article  Google Scholar 

  56. Placke, T., Siozios, V., Schmitz, R., Lux, S.F., Bieker, P., Colle, C., Meyer, H.W., Passerini, S., Winter, M.: Influence of graphite surface modifications on the ratio of basal plane to “non-basal plane” surface area and on the anode performance in lithium ion batteries. J. Power. Sources 200, 83–91 (2012). https://doi.org/10.1016/j.jpowsour.2011.10.085

    Article  Google Scholar 

  57. Etacheri, V., Wang, C., O’Connell, M.J., Chan, C.K., Pol, V.G.: Porous carbon sphere anodes for enhanced lithium-ion storage. J. Mater. Chem. A. 3, 9861–9868 (2015). https://doi.org/10.1039/c5ta01360g

    Article  Google Scholar 

  58. J.M. Wrogemann, O. Fromm, F. Deckwirth, K. Beltrop, A. Heckmann, M. Winter, T. Placke, 2022 Impact of Degree of Graphitization, Surface Properties and Particle Size Distribution on Electrochemical Performance of Carbon Anodes for Potassium-Ion Batteries, Batter. Supercaps. https://doi.org/10.1002/batt.202200045

  59. Shellikeri, A., Watson, V., Adams, D., Kalu, E.E., Read, J.A., Jow, T.R., Zheng, J.S., Zheng, J.P.: Investigation of pre-lithiation in graphite and hard-carbon anodes using different lithium source structures. J. Electrochem. Soc. 164, A3914–A3924 (2017). https://doi.org/10.1149/2.1511714jes

    Article  Google Scholar 

  60. Xie, L., Tang, C., Bi, Z., Song, M., Fan, Y., Yan, C., Li, X., Su, F., Zhang, Q., Chen, C.: Hard carbon anodes for next-generation li-ion batteries: review and perspective. Adv. Energy Mater. 11, 1–22 (2021). https://doi.org/10.1002/aenm.202101650

    Article  Google Scholar 

  61. Zhang, L., Wang, W., Lu, S., Xiang, Y.: Carbon anode materials: a detailed comparison between Na-ion and K-ion batteries. Adv. Energy Mater. 11, 1–15 (2021). https://doi.org/10.1002/aenm.202003640

    Article  Google Scholar 

  62. Kim, T., Jo, C., Lim, W.G., Lee, J., Lee, J., Lee, K.H.: Facile conversion of activated carbon to battery anode material using microwave graphitization. Carbon N. Y. 104, 106–111 (2016). https://doi.org/10.1016/j.carbon.2016.03.021

    Article  Google Scholar 

  63. Oktaviano, H.S., Waki, K.: Understanding the Li storage sites in MWCNTs: SEI, the Key for Delithiation at high potential. J. Electrochem. Soc. 163, A442–A446 (2016). https://doi.org/10.1149/2.0351603jes

    Article  Google Scholar 

  64. Y.S. Choudhary, L. Jothi, G. 2017 Nageswaran, Electrochemical Characterization, Elsevier Inc. https://doi.org/10.1016/B978-0-323-46140-5.00002-9.

  65. Wang, K., Xu, Y., Wu, H., Yuan, R., Zong, M., Li, Y., Dravid, V., Ai, W., Wu, J.: A hybrid lithium storage mechanism of hard carbon enhances its performance as anodes for lithium-ion batteries. Carbon N. Y. 178, 443–450 (2021). https://doi.org/10.1016/j.carbon.2020.11.095

    Article  Google Scholar 

  66. Qiu, D., Kang, C., Li, M., Wei, J., Hou, Z., Wang, F., Yang, R.: Biomass-derived mesopore-dominant hierarchical porous carbon enabling ultra-efficient lithium ion storage. Carbon N. Y. 162, 595–603 (2020). https://doi.org/10.1016/j.carbon.2020.02.083

    Article  Google Scholar 

  67. Weiss, M., Ruess, R., Kasnatscheew, J., Levartovsky, Y., Levy, N.R., Minnmann, P., Stolz, L., Waldmann, T., Wohlfahrt-Mehrens, M., Aurbach, D., Winter, M., Ein-Eli, Y., Janek, J.: Fast charging of lithium-ion batteries: a review of materials aspects. Adv. Energy Mater. 11(2101126), 1–37 (2021). https://doi.org/10.1002/aenm.202101126

    Article  Google Scholar 

  68. Rao, X., Lou, Y., Chen, J., Lu, H., Cheng, B., Wang, W., Fang, H., Li, H., Zhong, S.: Polyacrylonitrile hard carbon as anode of high rate capability for lithium ion batteries. Front. Energy Res. 8, 1–9 (2020). https://doi.org/10.3389/fenrg.2020.00003

    Article  Google Scholar 

  69. Park, T.H., Yeo, J.S., Seo, M.H., Miyawaki, J., Mochida, I., Yoon, S.H.: Enhancing the rate performance of graphite anodes through addition of natural graphite/carbon nanofibers in lithium-ion batteries. Electrochim. Acta 93, 236–240 (2013). https://doi.org/10.1016/j.electacta.2012.12.124

    Article  Google Scholar 

Download references

Acknowledgements

The authors express gratitude to the Japan Society for the Promotion of Science through the JSPS RONPAKU (Dissertation Ph.D.) Program and Research Project from Research Organization for Electronics & Informatics, National Research and Innovation Agency (BRIN)-Indonesia for financial support of this work. The authors acknowledge the facilities and technical support from Advanced Characterization Laboratories in Serpong, Research Center for Advanced Materials at the National Research and Innovation Agency in Indonesia, and Osaka University.

Funding

The authors acknowledge the financial support of the JSPS RONPAKU (Dissertation Ph.D) Program and Research Project from Research Organization for Electronic & Informatics, National Research and Innovation Agency (BRIN) - Indonesia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredina Destyorini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8826 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Destyorini, F., Priyono, S., Oktaviano, H.S. et al. Porous Graphitic Carbon from Coconut Coir Biochar Developed by Ni–KOH Single-Pot Graphitization Process for Lithium-Ion Battery Anodes. Waste Biomass Valor 15, 2881–2895 (2024). https://doi.org/10.1007/s12649-023-02343-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02343-w

Keywords

Navigation