Skip to main content
Log in

Integration of Pretreated Crop Residues to Improve the Valorization of Biogas Digestate by the Black Soldier Fly (Hermetia illucens L.; Diptera: Stratiomyidae) Larvae

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The growing interest in anaerobic digestion has led to an increase in the production of digestate that can be re-used. This work evaluates the possibility of using black soldier fly larvae (BSFL) to valorize biogas digestate, maize residue and alfalfa. The solid fraction of two digestates originating from two different biogas plants was used. Different diets (mixed or single substrates) were developed using digestate, maize residue and alfalfa. In addition, thermal hydrolysis as well as enzymatic hydrolysis were performed on the agricultural crops to break down fibers into reducing sugars, before being fed to BSFL. Chemical analysis of the substrates and a performance analysis were conducted. Application of the pretreatment on the agricultural crops improved larval growth on maize residue and alfalfa. Although larvae reached higher mass gain on pretreated maize residue and alfalfa than on non-pretreated crops, once these agricultural crops were mixed with digestate, performance decreased. Indeed, larval growth on digestate-based diets was very poor compared to the standard diet, with the average individual larval weight reared on digestate 1 and digestate 2 being 14.6 ± 2.54 mg and 46.43 ± 6.68 mg, respectively. A significant difference (p = 0.0018) was found between length gain of the two digestates, indicating that certain digestates lead to different BSFL yield. According to the results of this study, BSFL treatment of digestate was not efficient and further research is needed to elucidate the mechanisms preventing digestate from being effectively converted into larval biomass.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. ur Rehman, K., et al.: Black soldier fly, Hermetia illucens as a potential innovative and environmentally friendly tool for organic waste management: a mini-review. Waste Manag. Res. J. Sustain. Circ. Econ. 41(1), 81–97 (2023). https://doi.org/10.1177/0734242X221105441

    Article  MathSciNet  Google Scholar 

  2. Surendra, K.C., Olivier, R., Tomberlin, J.K., Jha, R., Khanal, S.K.: Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renew. Energy 98, 197–202 (2016). https://doi.org/10.1016/j.renene.2016.03.022

    Article  Google Scholar 

  3. Liew, C.S., et al.: A review on recent disposal of hazardous sewage sludge via anaerobic digestion and novel composting. J. Hazard. Mater. 423, 126995 (2022). https://doi.org/10.1016/j.jhazmat.2021.126995

    Article  Google Scholar 

  4. Torrisi, B., et al.: Physico-chemical and multielemental traits of anaerobic digestate from Mediterranean agro-industrial wastes and assessment as fertiliser for citrus nurseries. Waste Manag. 131, 201–213 (2021). https://doi.org/10.1016/j.wasman.2021.06.007

    Article  Google Scholar 

  5. Gaj, K., Cichuta, K.: Combined biological method for simultaneous removal of hydrogen sulphide and volatile methylsiloxanes from biogas. Energies 16(1), 100 (2022). https://doi.org/10.3390/en16010100

    Article  Google Scholar 

  6. Dahlin, J., Nelles, M., Herbes, C.: Biogas digestate management: evaluating the attitudes and perceptions of German gardeners towards digestate-based soil amendments. Resour. Conserv. Recycl. 118, 27–38 (2017). https://doi.org/10.1016/j.resconrec.2016.11.020

    Article  Google Scholar 

  7. Vaneeckhaute, C., et al.: Nutrient recovery from digestate: systematic technology review and product classification. Waste Biomass Valoriz. 8(1), 21–40 (2017). https://doi.org/10.1007/s12649-016-9642-x

    Article  Google Scholar 

  8. Leong, Y.K., Chang, J.-S.: Integrated role of algae in the closed-loop circular economy of anaerobic digestion. Bioresour. Technol. 360, 127618 (2022). https://doi.org/10.1016/j.biortech.2022.127618

    Article  Google Scholar 

  9. Södergren, J., et al.: Food waste to new food: risk assessment and microbial community analysis of anaerobic digestate as a nutrient source in hydroponic production of vegetables. J. Clean. Prod. 333, 130239 (2022). https://doi.org/10.1016/j.jclepro.2021.130239

    Article  Google Scholar 

  10. Akhiar, A., et al.: Anaerobic digestion industries progress throughout the world. Presented at the IOP Conference Series: Earth and Environmental Science, p. 012074. IOP Publishing (2020)

  11. Bach, I.-M., Essich, L., Bauerle, A., Müller, T.: Efficiency of phosphorus fertilizers derived from recycled biogas digestate as applied to maize and ryegrass in soils with different pH. Agriculture (2022). https://doi.org/10.3390/agriculture12030325

    Article  Google Scholar 

  12. Sfetsas, T., et al.: A review of advances in valorization and post-treatment of anaerobic digestion liquid fraction effluent. Waste Manag. Res. 40(8), 1093–1109 (2022). https://doi.org/10.1177/0734242X211073000

    Article  Google Scholar 

  13. Gurmessa, B., et al.: Post-digestate composting benefits and the role of enzyme activity to predict trace element immobilization and compost maturity. Bioresour. Technol. 338, 125550 (2021). https://doi.org/10.1016/j.biortech.2021.125550

    Article  Google Scholar 

  14. Tambone, F., Terruzzi, L., Scaglia, B., Adani, F.: Composting of the solid fraction of digestate derived from pig slurry: biological processes and compost properties. Waste Manag. 35, 55–61 (2015). https://doi.org/10.1016/j.wasman.2014.10.014

    Article  Google Scholar 

  15. Samoraj, M., et al.: The challenges and perspectives for anaerobic digestion of animal waste and fertilizer application of the digestate. Chemosphere 295, 133799 (2022). https://doi.org/10.1016/j.chemosphere.2022.133799

    Article  Google Scholar 

  16. Nkoa, R.: Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agron. Sustain. Dev. 34(2), 473–492 (2014). https://doi.org/10.1007/s13593-013-0196-z

    Article  Google Scholar 

  17. Lim, J.J., et al.: Cellulase pretreated palm decanter cake for feeding of black soldier fly larvae in triggering bioaccumulation of protein and lipid into biodiesel productions. Sustain. Energy Technol. Assess. 53, 102485 (2022). https://doi.org/10.1016/j.seta.2022.102485

    Article  Google Scholar 

  18. Van Huis, A.: Edible insects: challenges and prospects. Entomol. Res. 52(4), 161–177 (2022). https://doi.org/10.1111/1748-5967.12582

    Article  Google Scholar 

  19. Yang-Jie, D., Xiang, F.-M., Tao, X.-H., Jiang, C.-L., Zhang, T.-Z., Zhang, Z.-J.: A full-scale black soldier fly larvae (Hermetia illucens) bioconversion system for domestic biodegradable wastes to resource. Waste Manag. Res. 41(1), 143–154 (2023). https://doi.org/10.1177/0734242X221103936

    Article  Google Scholar 

  20. Song, S., et al.: Upcycling food waste using black soldier fly larvae: effects of further composting on frass quality, fertilising effect and its global warming potential. J. Clean. Prod. 288, 125664 (2021). https://doi.org/10.1016/j.jclepro.2020.125664

    Article  Google Scholar 

  21. Tan, J.K.N., et al.: Applications of food waste-derived black soldier fly larval frass as incorporated compost, side-dress fertilizer and frass-tea drench for soilless cultivation of leafy vegetables in biochar-based growing media. Waste Manag. 130, 155–166 (2021). https://doi.org/10.1016/j.wasman.2021.05.025

    Article  Google Scholar 

  22. Menino, R., et al.: Agricultural value of black soldier fly larvae frass as organic fertilizer on ryegrass. Heliyon 7(1), e05855 (2021). https://doi.org/10.1016/j.heliyon.2020.e05855

    Article  Google Scholar 

  23. Pas, C., et al.: Valorization of pretreated biogas digestate with black soldier fly (Hermetia illucens, L; Diptera: Stratiomyidae) larvae. J. Environ. Manag. 319, 115529 (2022). https://doi.org/10.1016/j.jenvman.2022.115529

    Article  Google Scholar 

  24. Spranghers, T., et al.: Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates: nutritional composition of black soldier fly. J. Sci. Food Agric. 97(8), 2594–2600 (2017). https://doi.org/10.1002/jsfa.8081

    Article  Google Scholar 

  25. Veldkamp, T., van Rozen, K., Elissen, H., van Wikselaar, P., van der Weide, R.: Bioconversion of digestate, pig manure and vegetal residue-based waste operated by black soldier fly larvae, Hermetia illucens L. (Diptera: Stratiomyidae). Animals (2021). https://doi.org/10.3390/ani11113082

    Article  Google Scholar 

  26. Manurung, R., Supriatna, A., Esyanthi, R.R., Putra, R.E.: Bioconversion of rice straw waste by black soldier fly larvae (Hermetia illucens L.): optimal feed rate for biomass production. J. Entomol. Zool. Stud. 4(4), 1036–1041 (2016)

    Google Scholar 

  27. Elsayed, M., et al.: Innovative integrated approach of biofuel production from agricultural wastes by anaerobic digestion and black soldier fly larvae. J. Clean. Prod. 263, 121495 (2020). https://doi.org/10.1016/j.jclepro.2020.121495

    Article  Google Scholar 

  28. Fu, S.-F., Wang, D.-H., Xie, Z., Zou, H., Zheng, Y.: Producing insect protein from food waste digestate via black soldier fly larvae cultivation: a promising choice for digestate disposal. Sci. Total Environ. 830, 154654 (2022). https://doi.org/10.1016/j.scitotenv.2022.154654

    Article  Google Scholar 

  29. Liu, C., Wang, C., Yao, H., Chapman, S.J.: Pretreatment is an important method for increasing the conversion efficiency of rice straw by black soldier fly larvae based on the function of gut microorganisms. Sci. Total Environ. 762, 144118 (2021). https://doi.org/10.1016/j.scitotenv.2020.144118

    Article  Google Scholar 

  30. Rahmani, A.M., Tyagi, V.K., Gunjyal, N., Kazmi, A.A., Ojha, C.S.P., Moustakas, K.: Hydrothermal and thermal-alkali pretreatments of wheat straw: co-digestion, substrate solubilization, biogas yield and kinetic study. Environ. Res. 216, 114436 (2023). https://doi.org/10.1016/j.envres.2022.114436

    Article  Google Scholar 

  31. Statistics Canada. Corn, sweet corn. https://www.statcan.gc.ca/o1/en/plus/1526-corn-sweet-corn (2022)

  32. OFA. Biomass Crop Residues Availability for Bioprocessing. Ontario Federation of Agriculture. https://ofa.on.ca/wp-content/uploads/2017/11/Biomass_Crop_Residues_Availability_for_Bioprocessing_Final_Oct_2_2012.pdf (2012)

  33. Bakala, H.S., Devi, J., Ankita, Sarao, L.K., Kaur, S.: Utilization of wheat and maize waste as biofuel source. In: Srivastava, N., Verma, B., Mishra, P.K. (eds.) Agroindustrial waste for green fuel application, pp. 27–66. Springer Nature Singapore, Singapore (2023). https://doi.org/10.1007/978-981-19-6230-1_2

    Chapter  Google Scholar 

  34. Hogsette, J.A.: New diets for production of house flies and stable flies (Diptera: Muscidae) in the laboratory. J. Econ. Entomol. 85(6), 2291–2294 (1992). https://doi.org/10.1093/jee/85.6.2291

    Article  Google Scholar 

  35. Bosch, G., et al.: Standardisation of quantitative resource conversion studies with black soldier fly larvae. J. Insects Food Feed 6(2), 95–109 (2020). https://doi.org/10.3920/JIFF2019.0004

    Article  Google Scholar 

  36. Sharma, S., Nandal, P., Arora, A.: Ethanol production from NaOH pretreated rice straw: a cost effective option to manage rice crop residue. Waste Biomass Valoriz. 10(11), 3427–3434 (2019). https://doi.org/10.1007/s12649-018-0360-4

    Article  Google Scholar 

  37. Bruno, D., et al.: An in-depth description of head morphology and mouthparts in larvae of the black soldier fly Hermetia illucens. Arthropod Struct. Dev. 58, 100969 (2020). https://doi.org/10.1016/j.asd.2020.100969

    Article  Google Scholar 

  38. Parra Paz, A.S., Carrejo, N.S., Gómez Rodríguez, C.H.: Effects of larval density and feeding rates on the bioconversion of vegetable waste using black soldier fly larvae Hermetia illucens (L.), (Diptera: Stratiomyidae). Waste Biomass Valoriz. 6(6), 1059–1065 (2015). https://doi.org/10.1007/s12649-015-9418-8

    Article  Google Scholar 

  39. Nyakeri, E.M., Ayieko, M., Amimo, F., Salum, H., Ogola, H.J.O.: An optimal feeding strategy for black soldier fly larvae biomass production and faecal sludge reduction. J. Insects as Food and Feed (2019). https://doi.org/10.3920/JIFF2018.0017

    Article  Google Scholar 

  40. Gold, M., et al.: Biowaste treatment with black soldier fly larvae: increasing performance through the formulation of biowastes based on protein and carbohydrates. Waste Manag. 102, 319–329 (2020). https://doi.org/10.1016/j.wasman.2019.10.036

    Article  Google Scholar 

  41. Peguero, D.A., Gold, M., Endara, A., Niu, M., Zurbrügg, C., Mathys, A.: Evaluation of ammonia pretreatment of four fibrous biowastes and its effect on black soldier fly larvae rearing performance. Waste Manag. 160, 123–134 (2023). https://doi.org/10.1016/j.wasman.2023.01.033

    Article  Google Scholar 

  42. Lu, Y., et al.: Effects of different nitrogen sources and ratios to carbon on larval development and bioconversion efficiency in food waste treatment by black soldier fly larvae (Hermetia illucens). Insects (2021). https://doi.org/10.3390/insects12060507

    Article  Google Scholar 

  43. Parodi, A., et al.: Upgrading ammonia-nitrogen from manure into body proteins in black soldier fly larvae. Resour. Conserv. Recycl. 182, 106343 (2022). https://doi.org/10.1016/j.resconrec.2022.106343

    Article  Google Scholar 

  44. Möller, K., Müller, T.: Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review: digestate nutrient availability. Eng. Life Sci. 12(3), 242–257 (2012). https://doi.org/10.1002/elsc.201100085

    Article  Google Scholar 

  45. Cai, M., et al.: Resistance of black soldier fly (Diptera: Stratiomyidae) larvae to combined heavy metals and potential application in municipal sewage sludge treatment. Environ. Sci. Pollut. Res. 25(2), 1559–1567 (2018). https://doi.org/10.1007/s11356-017-0541-x

    Article  Google Scholar 

  46. Wu, N., Wang, X., Xu, X., Cai, R., Xie, S.: Effects of heavy metals on the bioaccumulation, excretion and gut microbiome of black soldier fly larvae (Hermetia illucens). Ecotoxicol. Environ. Saf. 192, 110323 (2020). https://doi.org/10.1016/j.ecoenv.2020.110323

    Article  Google Scholar 

  47. Cho, S., Kim, C.-H., Kim, M.-J., Chung, H.: Effects of microplastics and salinity on food waste processing by black soldier fly (Hermetia illucens) larvae. J. Ecol. Environ. 44(1), 7 (2020). https://doi.org/10.1186/s41610-020-0148-x

    Article  Google Scholar 

  48. Chozhavendhan, S., et al.: Current and prognostic overview on the strategic exploitation of anaerobic digestion and digestate: a review. Environ. Res. 216, 114526 (2023). https://doi.org/10.1016/j.envres.2022.114526

    Article  Google Scholar 

  49. Ritigala, T., et al.: Optimized pre-treatment of high strength food waste digestate by high content aluminum-nanocluster based magnetic coagulation. J. Environ. Sci. 104, 430–443 (2021). https://doi.org/10.1016/j.jes.2020.12.027

    Article  Google Scholar 

  50. Urbanowska, A., Polowczyk, I., Kabsch-Korbutowicz, M., Seruga, P.: Characteristics of changes in particle size and zeta potential of the digestate fraction from the municipal waste biogas plant treated with the use of chemical coagulation/precipitation processes. Energies 13(22), 5861 (2020). https://doi.org/10.3390/en13225861

    Article  Google Scholar 

  51. Zhang, Z., et al.: Toxic effects of industrial flocculants addition on bioconversion of black soldier fly larvae (Hermetia illucens L.). Insects 13(8), 683 (2022). https://doi.org/10.3390/insects13080683

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by Fonds de recherche du Québec – Nature et technologies (reference 2021-PR-285600).

Funding

This research was funded by Fonds de recherche du Québec – Nature et technologies (Grant No. 2021-PR-285600).

Author information

Authors and Affiliations

Authors

Contributions

DB: conception, methodology, formal analysis, interpretation, writing—original copy. M-HD: conception, validation, writing—revision and editing. GV: writing—revision and editing. SB: supervision, project administration. DG: writing—revision and editing. M-AD: resource, writing—revision and editing. CV: resource, writing—revision and editing. KA: supervision, writing—revision and editing.

Corresponding author

Correspondence to K. Adjalle.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brodeur, D., Deschamps, MH., Vandenberg, G. et al. Integration of Pretreated Crop Residues to Improve the Valorization of Biogas Digestate by the Black Soldier Fly (Hermetia illucens L.; Diptera: Stratiomyidae) Larvae. Waste Biomass Valor 15, 2671–2685 (2024). https://doi.org/10.1007/s12649-023-02340-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02340-z

Keywords

Navigation