Skip to main content
Log in

The Effect of Drying Condition on Citrus sinensis (Osbek) Peel Waste Essential Oil’s Composition, Antioxidant, Antibacterial and Tyrosinase Inhibition Activities

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Orange peel waste (OPW) is a source of functional ingredients including essential oils (EOs). This coproduct has a seasonal production and is perishable due to its high moisture content. Drying could be an efficient method to conserve OPW for furthers uses. The aim of this work is to investigate the effect of five different drying conditions including: lyophylisation, shade drying, oven drying (50, 60 and 70 °C) on the composition, antibacterial, antioxidant and tyrosinase inhibition activities of OPW EOs. Our results showed that drying time were signifcantly affected by OPW drying conditions. Indeed, the shortest drying times were recorded in the OPW dried in the oven at temperatures of 60 °C (24 H) and 70 °C (26 H). Drying conditions affected significantly the yield of OPW on EOs: fresh OPW had the highest yield (0.98 ± 0.1%). The chemical composition of OPW EOs was, also modified by the drying condition. However, Limonen stills the major compound, in all the tested EOs. Antibacterial activity of the tested EOs, depended in both bacteria and EOs. Indeed, the largest inhibition diameter and the lowest MIC was recorded in E.coli when treated with shade dried OPW EO. For the inhibition of initial bacteria cell attachment, our results showed that it ranged between 3.42 ± 0.03% and 61.13 ± 0.0.04% recorded respectively in E. coli when treated with oven dried OPW EO at 50 °C and in P. aeruginosa when treated with shade dried OPW EO. The inhibition percent of biofilm formation and development varied between 0.19 ± 0.02% and 51.29 ± 0.08%, recorded respectively in P. aeruginosa and in S. typhimurium, when both of them are treated with oven dried OPW EO at 50 °C. DPPH and ABTS test showed that, the highest antioxidant activity was found in EO extracted from fresh OPW and from OPW dried in the oven at 70 °C. For the tyrosinase inhibition activity, results showed that the IC50 ranged between 12.66 ± 0.66 mg/mL and 120.65 ± 3.43 mg/mL, recorded in the EOs extracted respectively from OPW dried in the oven at 70 °C and 50 °C.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. FAO: L’Organisation des Nations Unies pour l’alimentation et l’agriculture Fruits et légumes-éléments essentiels de ton alimentation. Année internationale des fruits et des légumes, 2021 Note d’information. Rome (2021). https://doi.org/10.4060/cb2395fr

  2. Karn, A., Zhao, C., Yang, F., Cui, J., Gao, Z., Wang, M., Wang, F., Xiao, H., Zheng, J.: In-vivo biotransformation of citrus functional components and their effects on health. Crit. Rev. Food Sci. Nutr. 21(5), 756–776 (2020). https://doi.org/10.1080/10408398.2020.1746234

    Article  Google Scholar 

  3. DGPA Direction générale de la Production Agricole: Report of general direction of agricultural production. Tunisian Ministry of Agriculture (2016)

  4. Acoglu, B., Omeroglu, Y.: Effectiveness of different type of washing agents on reduction of pesticide residues in orange (Citrus sinensis). LWT Food Sci. Technol. 147, 111690 (2021). https://doi.org/10.1016/j.lwt.2021.111690

    Article  Google Scholar 

  5. Putnik, P., Kovacevic, D.B., Jambrak, A.R., Barba, F.J., Cravotto, G., Binello, A., Lorenzo, J.M., Shpigelman, A.: Innovative green and novel strategies for the extraction of bioactive added value compounds from citrus wastes—a review. Molecules 22, 680 (2017). https://doi.org/10.3390/molecules22050680

    Article  Google Scholar 

  6. Mahato, N., Sinha, M., Sharma, K., Koteswararao, R., Cho, M.H.: Modern extraction and purification techniques for obtaining high purity food-grade bioactive compounds and value-added co-products from citrus wastes. Foods 8(11), 523 (2019). https://doi.org/10.3390/foods8110523

    Article  Google Scholar 

  7. Sataria, B., Karimi, K.: Citrus processing wastes: environmental impacts, recent advances and future perspectives in total valorization. Resour. Conserv. Recycl. 129, 153–167 (2018). https://doi.org/10.1016/j.resconrec.2017.10.032

    Article  Google Scholar 

  8. Teigiserova, D.A., Hamelin, L., Barna, L.T., Ahmadi, A., Thomsen, M.: Circular bioeconomy: life cycle assessment of scaled-up cascading production from orange peel waste under current and future electricity mixes. Sci. Total Environ. 812, 152574 (2022). https://doi.org/10.1016/j.scitotenv.2021.152574

    Article  Google Scholar 

  9. Negro, V., Ruggeri, B., Fino, D., Tonini, D.: Life cycle assessment of orange peel waste management. Resour. Conserv. Recycl. 127, 148–158 (2017). https://doi.org/10.1016/j.resconrec.2017.08.014

    Article  Google Scholar 

  10. Pradal, D., Vauchel, P., Decossin, S., Dhulster, P., Dimitrov, K.: Kinetics of ultrasound,assisted extraction of antioxidant polyphenols from food by-products: extraction and energy consumption optimization. Ultrason. Sonochem. 32, 137–146 (2016). https://doi.org/10.1016/j.ultsonch.2016.03.001

    Article  Google Scholar 

  11. Gonçalves, D., Costa, P., Rodrigues, C.E.C., Rodrigues, A.E.: Effect of Citrus sinensis essential oil deterpenation on the aroma profile of the phases obtained by solvent extraction. J. Chem. Thermodyn. 116, 166–175 (2018). https://doi.org/10.1016/j.jct.2017.09.011

    Article  Google Scholar 

  12. Ozcan, M.M., Ghafoor, K., Al Juhaimi, F., Uslu, N., Babiker, E.E., Ahmed, I.A.M., Almusallam, I.A.: Influence of drying techniques on bioactive properties, phenolic compounds and fatty acid compositions of dried lemon and orange peel powders. J. Food Sci. Technol. 58(1), 147–158 (2021). https://doi.org/10.1007/s13197-020-04524-0

    Article  Google Scholar 

  13. Lota, M.L., de Rocca Serra, D., Tomi, F., Jacquemond, C., Casanova, J.: Volatile components of peel and leaf oils of lemon and lime species. J. Agric. Food Chem. 50, 796–805 (2002). https://doi.org/10.1021/jf010924l

    Article  Google Scholar 

  14. Farahmandfar, R., Tirgaria, B., Dehghan, B., Nemati, A.: Changes in chemical composition and biological activity of essential oil from Thomson navel orange (Citrus sinensis L. Osbeck) peel under freezing, convective, vacuum and microwave drying methods. Food Sci. Nutr. 8, 124–138 (2020). https://doi.org/10.1002/fsn3.1279

    Article  Google Scholar 

  15. Dridi, I., Haouel-Hamdi, S., Cheraief, I., Mediouni Ben Jemâa, J., Landoulsi, A., Chaouch, R.: Tunisian Lavandula Dentata (L) flowering tops essential oil: chemical composition, antimicrobial, antioxidant and insecticidal activities. J. Essent. Oil-bear Plants 24(3), 632–647 (2021). https://doi.org/10.1080/0972060X.2021.1944326

    Article  Google Scholar 

  16. Dhieb, A.C., Dridi, I., Mathlouthi, M., Rzaigui, M., Smirani, W.: Structural physico chemical studies and biological analyses of a cadmium cluster complex. J. Clust. Sci. 29, 1123–1131 (2018). https://doi.org/10.1007/s10876-018-1427-x

    Article  Google Scholar 

  17. Gannouni, A., Dridi, I., Elleuch, S., Jouffret, L., Kefi, R.: Synthesis and characterization of a hybrid material (C10 H28 N4) [CoCl4]2 using Hirshfeld surface, vibrational and optical spectroscopy, DFT calculations and biological activities. J. Mol. Struct. 1250(1), 131804 (2022). https://doi.org/10.1016/j.molstruc.2021.131804

    Article  Google Scholar 

  18. Hachani, A., Dridi, I., Othmani, A., Roisnel, T., Stephane, H.: A zero dimensional hybrid organic- inorganic perovskite CuCl4 based: synthesis, crystal structure, vibrational, optical properties, DFT and TDFT calculations, dielectric properties and biological activity. J. Mol. Struct. 1229, 129838 (2021). https://doi.org/10.1016/j.molstruc.2020.129838

    Article  Google Scholar 

  19. Sandasi, M., Leonard, C.M., Viljoen, A.M.: The effect of five common essential oil components on Listeria monocytogenes biofilms. Food Control 19(11), 1070–1075 (2008). https://doi.org/10.1016/j.foodcont.2007.11.006

    Article  Google Scholar 

  20. Mphahlele, R.R., Fawole, O.A., Makunga, N.P., Opara, U.L.: Effect of drying on the bioactive compounds, antioxidant, antibacterial and antityrosinase activities of pomegranate peel. BMC Complement Altern. Med. 16, 143 (2016). https://doi.org/10.1186/s12906-016-1132-y

    Article  Google Scholar 

  21. Phuon, V., Ramos, I.N., Brandao, T.R.S., Silva, C.L.M.: Assessment of the impact of drying processes on orange peel quality characteristics. J. Food Process Eng. 45, e13794 (2022). https://doi.org/10.1111/jfpe.13794

    Article  Google Scholar 

  22. Garau, M.C., Simal, S., Femenia, A., Rossello, C.: Drying of orange skin: drying kinetics modelling and functional properties. J. Food Eng. 75(2), 288–295 (2006). https://doi.org/10.1016/j.jfoodeng.2005.04.017

    Article  Google Scholar 

  23. Tasirin, S.M., Puspasari, I., Lun, A.W., Chai, P.V., Lee, W.T.: Drying of kaffir lime leaves in a fluidized bed dryer with inert particles: kinetics and quality determination. Ind. Crop. Prod. 61, 193–201 (2014). https://doi.org/10.1016/j.indcrop.2014.07.004

    Article  Google Scholar 

  24. Zhang, L.L., Shuang, L., Xu, J.G., Zhang, L.F.: Influence of drying methods on chemical compositions, antioxidant and antibacterial activity of essential oil from lemon peel. Nat. Prod. Res. 32(10), 1184–1188 (2018). https://doi.org/10.1080/14786419.2017.1320791

    Article  Google Scholar 

  25. Matuka, T., Oyedeji, O., Gondwe, M., Oyedeji, A.: Chemical composition and in vivo anti-inflammatory activity of essential oils from Citrus sinensis (L.) osbeck growing in South Africa. J. Essent. Oil Bear. Plants 23(4), 638–647 (2020). https://doi.org/10.1080/0972060X.2020.1819885

    Article  Google Scholar 

  26. Farahmandfar, R., Tirgarian, B., Dehghan, B., Nemati, A.: Comparison of different drying methods on bitter orange (Citrus aurantium L.) peel waste: changes in physical (density and color) and essential oil (yield, composition, antioxidant and antibacterial) properties of powders. J. Food Meas. Charact. 14, 862–875 (2020). https://doi.org/10.1007/s11694-019-00334-x

    Article  Google Scholar 

  27. Caputo, L., Amato, G., de Bartolomeis, P., De Martino, L., Manna, F., Nazzaro, F., De Feo, V., Barba, A.A.: Impact of drying methods on the yield and chemistry of Origanum vulgare L. essential oil. Sci. Rep. 12, 3845 (2022). https://doi.org/10.1038/s41598-022-07841-w

    Article  Google Scholar 

  28. Lamidi, A.U., Olusola, I.W., Ridwan, O.I., Adebayo, O.O.: Effect of drying on yield, chemical composition and insecticidal activity of leaf essential oil of sweet orange (Citrus sinensis). J. Turk. Chem. Soc. 3(1), 1–18 (2016). https://doi.org/10.18596/jotcsa.98689

    Article  Google Scholar 

  29. Sellami, I.H., Bettaieb, I.R., Sriti, J., Rahali, F.Z., Limam, F., Marzouk, B.: Drying sage (Salvia officinalis L.) plants and its effects on content, chemical composition, and radical scavenging activity of the essential oil. Food Bioprocess Technol. 5, 2978–2989 (2012). https://doi.org/10.1007/s11947-011-0661-0

    Article  Google Scholar 

  30. Samadi, L., Larijani, K., Badi, N., Mehrafarin, H.: Qualitative and quantitative variations of the essential oils of Dracocephalum Kotschyi Boiss: as affected by different drying methods. J. Food Process Preserv. 42(11), e13816 (2018). https://doi.org/10.1111/jfpp.13816

    Article  Google Scholar 

  31. Hazrati, S., Farnia, P., Habibzadeh, F., Mollaei, S.: Effect of different drying techniques on qualitative and quantitative properties of Stachys Schtschegleevii essential oil. J. Food Process Preserv. 42(8), e13686 (2018). https://doi.org/10.1111/jfpp.13686

    Article  Google Scholar 

  32. Feyzi, E., Eikani, M.H., Golmohammad, F., Tafaghodinia, B.: Extraction of essential oil from Bunium persicum (boiss.) by instant controlled pressure drop. J. Chromatogr. A 1530, 59–67 (2017). https://doi.org/10.1016/j.chroma.2017.11.033

    Article  Google Scholar 

  33. Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., De Feo, V.: Effect of essential oils on pathogenic bacteria. Pharmaceuticals 6, 1451–1474 (2013). https://doi.org/10.3390/ph6121451

    Article  Google Scholar 

  34. Diao, W.R., Hu, Q.P., Zhang, H., Xu, J.G.: Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill). Food Control 35, 109–116 (2014). https://doi.org/10.1016/j.foodcont.2013.06.056

    Article  Google Scholar 

  35. Bazargani, M.M., Rohloff, J.: Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control 61, 156–164 (2016). https://doi.org/10.1016/j.foodcont.2015.09.036

    Article  Google Scholar 

  36. Jamal, M., Ahmad, W., Andleeb, S., Jalil, F., Imran, M., Nawaz, M.A., Hussain, T., Ali, M., Rafiq, M., Kamil, M.A.: Bacterial biofilm and associated Infections. J. Chin. Med. Assoc. 81(1), 7–11 (2018). https://doi.org/10.1016/j.jcma.2017.07.012

    Article  Google Scholar 

  37. Schulze, A., Mitterer, F., Pombo, J.P., Schild, S.: Biofilms by bacterial human pathogens: clinical relevance development, composition and regulation therapeutical strategies. Microb. Cell. 8(2), 28–56 (2021). https://doi.org/10.15698/mic2021.02.741

    Article  Google Scholar 

  38. Lim, A.C., Tang, S.G.H., Zin, N.M., Maisarah, A.M., Ariffin, I.A., Ker, P.J., Mahlia, T.M.I.: Chemical composition, antioxidant, antibacterial, and antibiofilm activities of Backhousia citriodora essential oil. Molecules 27(15), 4895 (2022). https://doi.org/10.3390/molecules27154895

    Article  Google Scholar 

  39. Famuyide, I.M., Aro, A.O., Fasina, F.O., Eloff, J.N., McGaw, L.J.: Antibacterial and antibiofilm activity of Acetone leaf extracts of nine under-investigated South African Eugenia and Syzygium (Myrtaceae) species and their selectivity indices. BMC Complement. Med. Ther. 19, 141 (2019). https://doi.org/10.1186/s12906-019-2547-z

    Article  Google Scholar 

  40. Sun, Y.W., Chen, S.J., Zhang, C., Liu, Y., Ma, L., Zhang, X.Y.: Effects of sub-minimum inhibitory concentrations of lemon essential oil on the acid tolerance and bioflm formation of Streptococcus mutants. Arch. Oral Biol. 87, 235–241 (2018). https://doi.org/10.1016/j.archoralbio.2017.12.028

    Article  Google Scholar 

  41. Subramenium, G.A., Vijayakumar, K., Pandian, S.K.: Limonene inhibits streptococcal bioflm formation by targeting surfaceassociated virulence factors. J. Med. Microbiol. 64(8), 879–890 (2015). https://doi.org/10.1099/jmm.0.000105

    Article  Google Scholar 

  42. Zolghadria, S., Bahramia, A., Hassan Khanb, M.T., Munozc, J.M., Molinad, F.G., Canovasd, F.G., Sabourye, A.A.: A comprehensive review on tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem. 34(1), 279–309 (2019). https://doi.org/10.1080/14756366.2018.1545767

    Article  Google Scholar 

  43. Mora, P.C., Baraldi, P.G.: Dermocosmetic applications of polymeric biomaterials. In: Dumitriu, S. (ed.) Polymeric biomaterials, pp. 459–488. CRC Press, Boca Raton (2001)

    Google Scholar 

  44. Aumeeruddy-Elalfi, Z., Gurib-Fakim, A., Mahomoodally, M.F.: Kinetic studies of tyrosinase inhibitory activity of 19 essential oils extracted from endemic and exotic medicinal plants. S. Afr. J. Bot. 103, 89–94 (2016). https://doi.org/10.1016/j.sajb.2015.09.010

    Article  Google Scholar 

  45. Prommaban, A., Chaiyana, W.: Microemulsion of essential oils from citrus peels and leaves with anti-aging, whitening, and irritation reducing capacity. J. Drug Deliv. Sci. Technol. 69, 103188 (2022). https://doi.org/10.1016/j.jddst.2022.103188

    Article  Google Scholar 

  46. Matsuura, R., Ukeda, H., Sawamura, M.: Tyrosinase inhibitory activity of citrus essential oils. J. Agric. Food Chem. 54(6), 2309–2313 (2006). https://doi.org/10.1021/jf051682i

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like tothank Dr. Chamekh Anissa (Laboratory of Plant Toxicology and Environmental Microbiology (LR 18ES38), University of Carthage) for his technical support during the lyophylisation of OPW and for her helful recommendations.

Funding

This work was gratefully financed by the Tunisian Ministry of Higher Education, Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dridi Imen.

Ethics declarations

Competing interests

Authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imen, D., Nadia, S., Souhaila, D. et al. The Effect of Drying Condition on Citrus sinensis (Osbek) Peel Waste Essential Oil’s Composition, Antioxidant, Antibacterial and Tyrosinase Inhibition Activities. Waste Biomass Valor 15, 2513–2526 (2024). https://doi.org/10.1007/s12649-023-02333-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02333-y

Keywords

Navigation