Skip to main content
Log in

Comprehensive Evaluation of Factors Impacting Hydrogenotrophic Methanogenic Activity Determinations

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The hydrogenotrophic pathway for methane production in anaerobic reactors is capturing the attention of the academic community. For this reason, the factors involved in the specific hydrogenotrophic methanogenic activity (SHMA) test must be well known to perform an accurate characterization of biosludge. Specifically, the resistance to mass transfer between the gas and liquid phases can become the primary factor influencing the global rate, thus yielding misleading results. This paper presents a comprehensive model that aims to understand the dynamics of the variables and evaluate the limitations associated with the assay conditions. Experimental determinations of SHMA and mass transfer coefficient (kLa) are performed to support the model findings. The mass transfer of gaseous substrates and the biological reactions, occurring within a pseudohomogeneous liquid phase, are sequential processes. If the resistance to mass transfer is significant relative to the reaction rate, it adversely affects the overall rate and consequently leads to an inaccurate determination of the activity. Therefore, careful consideration should be given to the shaking conditions, flask geometry, and biomass concentration during the test to prevent the mass transfer resistance from determining the overall rate.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Wainaina, S., Awasthi, M.K., Sarsaiya, S., Chen, H., Singh, E., Kumar, A., Ravindran, B., Awasthi, S.K., Liu, T., Duan, Y., Kumar, S., Zhang, Z., Taherzadeh, M.J.: Resource recovery and circular economy from organic solid waste using aerobic and anaerobic digestion technologies. Bioresour. Technol. 301(November 2019), 122778 (2020). https://doi.org/10.1016/j.biortech.2020.122778

    Article  Google Scholar 

  2. Hussain, Z., Mishra, J., Vanacore, E.: Waste to energy and circular economy: the case of anaerobic digestion. J. Enterp. Inform. Manag. 33(4), 817–838 (2020). https://doi.org/10.1108/JEIM-02-2019-0049

    Article  Google Scholar 

  3. Menezes Lima, J.A., Magalhães Filho, C., Constantino, F.J., Formagini, E.L.: Techno-economic and performance evaluation of energy production by anaerobic digestion in Brazil: Bovine, swine and poultry slaughterhouse effluents. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2020.123332

    Article  Google Scholar 

  4. Magnusson, T., Zanatta, H., Larsson, M., Kanda, W., Hjelm, O.: Circular economy, varieties of capitalism and technology diffusion: anaerobic digestion in Sweden and Paraná. J. Clean. Prod. 335(December 2021), 130300 (2022). https://doi.org/10.1016/j.jclepro.2021.130300

    Article  Google Scholar 

  5. Chozhavendhan, S., Karthigadevi, G., Bharathiraja, B., Kumar, R.P., Deso, L., Prabhu, S.V., Balachandar, R., Jayakumar, M.: Current and prognostic overview on the strategic exploitation of anaerobic digestion and digestate: a review. Environ. Res. 216(P2), 114526 (2023). https://doi.org/10.1016/j.envres.2022.114526

    Article  Google Scholar 

  6. Wang, Z., Wang, S., Hu, Y., Du, B., Meng, J., Wu, G., Liu, H., Zhan, X.: Distinguishing responses of acetoclastic and hydrogenotrophic methanogens to ammonia stress in mesophilic mixed cultures. Water Res. 224(August), 119029 (2022). https://doi.org/10.1016/j.watres.2022.119029

    Article  Google Scholar 

  7. Okoro-Shekwaga, C.K., Ross, A.B., Camargo-Valero, M.A.: Improving the biomethane yield from food waste by boosting hydrogenotrophic methanogenesis. Appl. Energy 254, 113629 (2019). https://doi.org/10.1016/j.apenergy.2019.113629

    Article  Google Scholar 

  8. Palù, M., Peprah, M., Tsapekos, P., Kougias, P., Campanaro, S., Angelidaki, I., Treu, L.: In-situ biogas upgrading assisted by bioaugmentation with hydrogenotrophic methanogens during mesophilic and thermophilic co-digestion. Bioresour. Technol. 348(January), 126754 (2022). https://doi.org/10.1016/j.biortech.2022.126754

    Article  Google Scholar 

  9. Khan, A., Akbar, S., Okonkwo, V., Smith, C., Khan, S., Ali Shah, A., Adnan, F., Ijaz, Z., Ahmed, U.S., Badshah, M.: Enrichment of the hydrogenotrophic methanogens for, in-situ biogas up-gradation by recirculation of gases and supply of hydrogen in methanogenic reactor. Bioresour. Technol. 345, 126219 (2022). https://doi.org/10.1016/j.biortech.2021.126219

    Article  Google Scholar 

  10. Soto, M., Méndez, R., Lema, J.M.: Methanogenic and non-methanogenic activity tests. Theoretical basis and experimental set up. Water Res. 27(8), 1361–1376 (1993). https://doi.org/10.1016/0043-1354(93)90224-6

    Article  Google Scholar 

  11. Colleran, E., Concannon, F., Golden, T., Geoghegan, F., Crumlish, B., Killilea, E., Henry, M., Coates, J.: Use of methanogenic activity tests to characterize anaerobic sludges, screen for anaerobic biodegradability and determine toxicity thresholds against individual anaerobic trophic. Water Sci. Technol. 25(7), 31–40 (1992). https://doi.org/10.2166/wst.1992.0136

    Article  Google Scholar 

  12. Rozzi, A., Remigi, E.: Methods of assessing microbial activity and inhibition under anaerobic conditions: a literature review. Rev. Environ. Sci. Bio/Technol. 3, 93–115 (2004)

    Article  Google Scholar 

  13. Coates, J., Coughlan, F.M., Colleran, E.: Simple method for the measurement of the hydrogenotrophic methanogenic activity of anaerobic sludges. J. Microbiol. Methods 26, 237–246 (1996)

    Article  Google Scholar 

  14. Shima, S., Huang, G., Wagner, T., Ermler, U.: Structural basis of hydrogenotrophic methanogenesis. Annu. Rev. Microbiol. 74, 713–733 (2020). https://doi.org/10.1146/annurev-micro-011720-122807

    Article  Google Scholar 

  15. Ripoll, E., López, I., Borzacconi, L.: Hydrogenotrophic activity: a tool to evaluate the kinetics of methanogens. J. Environ. Manag. 270, 110937 (2020). https://doi.org/10.1016/j.jenvman.2020.110937

    Article  Google Scholar 

  16. Rice, E.W., Baird, R.B., Eaton, A.D. (eds.): Standard methods for the examination of water and wastewater, 23rd edn. APHA, AWWA, WEF, Washington DC (2017)

    Google Scholar 

  17. Dankwerts, P.V.: Gas–liquid reactions, Ed.McGraw-Hill, ISBN 07-015287-2. (1970)

  18. Ruchti, G., Dunn, I.J., Bourne, J.R., von Stockar, U.: Practical guidelines for the determination of oxygen transfer coefficients (KLa) with the sulfite oxidation method. Chem. Eng. J. 30(1), 29–38 (1985). https://doi.org/10.1016/0300-9467(85)80004-6

    Article  Google Scholar 

  19. Puskeiler, R., Weuster-Botz, D.: Combined sulfite method for the measurement of the oxygen transfer coefficient kLa in bioreactors. J. Biotechnol. 120(4), 430–438 (2005). https://doi.org/10.1016/j.jbiotec.2005.06.016

    Article  Google Scholar 

  20. Wise, D.L., Houghton, G.: The diffusion coefficients of ten slightly soluble gases in water at 10–60°C. Chem. Eng. Sci. 21(11), 999–1010 (1966). https://doi.org/10.1016/0009-2509(66)85096-0

    Article  Google Scholar 

  21. Maharajh, D.M., Walkley, J.: The temperature dependence of the diffusion coefficients of Ar, COz, CH4, CH3CI, CH3Br, and CHCB2F in water. Can. J. Chem. 51, 944–952 (1972)

    Article  Google Scholar 

  22. Corominas, L., Rieger, L., Takacs, I., Ekama, G., Hauduc, H., Vanrolleghem, P.A., Oehmen, A., Gernaey, K.V., Loosdrecht, M.C.M., Comeau, Y.: New framework for standardized notation in wastewater treatment modelling. Water Sci. Technol. 61(4), 841–857 (2010). https://doi.org/10.2166/wst.2010.912

    Article  Google Scholar 

  23. Amaral, A., Gillot, S., Garrido-Baserba, M., Karpinska, A., Plósz, B., De Groot, C., Bellandi, G., Nopens, I., Takáks, I., Lizarralde, I., Jimenez, J., Fiat, J., Rieger, L., Arnell, M., Andersen, M., Jeppsson, U., Rehman, U., Fayolle, Y., Amerlink, Y., Rosso, D.: Modelling gas–liquid mass transfer in wastewater treatment: when current knowledge needs to encounter engineering practice and vice versa. Water Sci. Technol. 80(4), 607–619 (2019). https://doi.org/10.2166/wst.2019.253

    Article  Google Scholar 

  24. Batstone, D., Keller, J., Angelidaki, I., Kalyuzhnyi, S., Pavlostathis, S., Rozzi, A., Sanders, W., Siegrist, H., Vavilin, V. (IWA Task Group for Mathematical Modelling of Anaerobic Digestion Processes), Anaerobic Digestion Model N°1, IWA Scientific and Technical Report N°13, IWA Publishing, UK ISBN, 1900222787 (2002)

  25. Pauss, A., Andre, G., Perrier, M., Guiot, S.R.: Liquid-to-gas mass transfer in anaerobic processes: inevitable transfer limitations of methane and hydrogen in the biomethanation process. Appl. Environ. Microbiol. 56(6), 1636–1644 (1990). https://doi.org/10.1128/aem.56.6.1636-1644.1990

    Article  Google Scholar 

  26. Jud, G., Schneider, K., Bachofen, R.: The role of hydrogen mass transfer for the growth kinetics of Methanobacterium Thermoautotrophicum in batch and chemostat cultures. J. Ind. Microbiol. Biotechnol. 19(4), 246–251 (1997). https://doi.org/10.1038/sj.jim.2900461

    Article  Google Scholar 

  27. Karadagli, F., Marcus, A.K., Rittmann, B.E.: Role of hydrogen (H2) mass transfer in microbiological H2-threshold studies. Biodegradation 30(2–3), 113–125 (2019). https://doi.org/10.1007/s10532-019-09870-1

    Article  Google Scholar 

  28. Klöckner, W., Büchs, J.: Advances in shaking technologies. Trends Biotechnol. 30(6), 307–314 (2012). https://doi.org/10.1016/j.tibtech.2012.03.001

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Lopez.

Ethics declarations

Competing Interests

The authors have not disclosed any competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez, I., Ribeiro, M. & Borzacconi, L. Comprehensive Evaluation of Factors Impacting Hydrogenotrophic Methanogenic Activity Determinations. Waste Biomass Valor 15, 2911–2924 (2024). https://doi.org/10.1007/s12649-023-02332-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02332-z

Keywords

Navigation