Skip to main content
Log in

Biocatalyzed Vinyl Laurate Transesterification in Natural Deep Eutectic Solvents

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Natural deep eutectic solvents (NADES) represent a green alternative to conventional organic solvents as reaction medium, offering more benign properties. To efficiently design NADES for biocatalysis, a better understanding of their effect on these reactions is needed. We hypothesize that this effect can be described by separately considering (1) the solvent interactions with the substrates, (2) the solvent viscosities and (3) the enzyme stability in NADES.

Methods

We investigated the effect of substrate solvation and viscosity on the reaction rate; and the stability of the enzyme in NADES. To this end, we monitored the conversion over time of the transesterification of vinyl laurate with 1-butanol by the lipase enzyme Candida antarctica B in NADES of different compounds and molar ratios.

Results

The initial reaction rate is higher in most NADES (varying between 1.14 and 15.07 \(\mu mol\;min^{-1}\;mg^{-1}\)) than in the reference n-hexane (4.0 \(\mu mol\;min^{-1}\;mg^{-1}\))), but no clear relationship between viscosity and initial reaction rate was found. The increased reaction rate is most likely related to the solvation of the substrate due to a change in the activation energy of the reaction or a change in the conformation of the substrate. The enzyme retained part of its activity after the first 2 h of reaction (on average 20 % of the substrate reacted in the 2-24 h period). Enzyme incubation in ethylene glycol-based NADES resulted in a reduced reaction rate (15.07 vs. 3.34 \(\mu mol\;min^{-1}\;mg^{-1}\)), but this may also be due to slow dissolution of the substrate.

Conclusions

The effect of viscosity seems to be marginal next to the effect of solvation and possible enzyme-NADES interaction. The enzyme retains some of its activity during the 24-hour measurements, but the enzyme incubation experiments did not yield accurate, comparable values.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availibility

The data sets generated and/or analyzed in the current study are available from the corresponding author upon reasonable request.

References

  1. Paiva, A., Craveiro, R., Aroso, I., Martins, M., Reis, R.L., Duarte, A.R.C.: Natural deep eutectic solvents - solvents for the 21st century. ACS Sustain. Chem. Eng. 2(5), 1063–1071 (2014). https://doi.org/10.1021/sc500096j

    Article  Google Scholar 

  2. Zhang, Q., Vigier, K.D.O., Royer, S., Jerome, F.: Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev. 41(21), 7108 (2012). https://doi.org/10.1039/c2cs35178a

    Article  Google Scholar 

  3. Zhu, S., Li, H., Zhu, W., Jiang, W., Wang, C., Wu, P., Zhang, Q., Li, H.: Vibrational analysis and formation mechanism of typical deep eutectic solvents: an experimental and theoretical study. J. Mol. Gr. Model. 68, 158–175 (2016). https://doi.org/10.1016/j.jmgm.2016.05.003

    Article  Google Scholar 

  4. Zhang, C., Jia, Y., Jing, Y., Wang, H., Hong, K.: Main chemical species and molecular structure of deep eutectic solvent studied by experiments with dft calculation: a case of choline chloride and magnesium chloride hexahydrate. J. Mol. Model. (2014). https://doi.org/10.1007/s00894-014-2374-6

    Article  Google Scholar 

  5. Abbott, A.P., Boothby, D., Capper, G., Davies, D.L., Rasheed, R.K.: Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J. Am. Chem. Soc. 126(29), 9142–9147 (2004). https://doi.org/10.1021/ja048266j

    Article  Google Scholar 

  6. Kovács, A., Neyts, E.C., Cornet, I., Wijnants, M., Billen, P.: Modeling the physicochemical properties of natural deep eutectic solvents. ChemSusChem 13(15), 3789–3804 (2020). https://doi.org/10.1002/cssc.202000286

    Article  Google Scholar 

  7. Martins, M.A.R., Pinho, S.P., Coutinho, J.A.P.: Insights into the nature of eutectic and deep eutectic mixtures. J. Solut. Chem. 48(7), 962–982 (2018). https://doi.org/10.1007/s10953-018-0793-1

    Article  Google Scholar 

  8. Choi, Y.H., van Spronsen, J., Dai, Y., Verberne, M., Hollmann, F., Arends, I.W.C.E., Witkamp, G.-J., Verpoorte, R.: Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol. 156(4), 1701–1705 (2011). https://doi.org/10.1104/pp.111.178426

    Article  Google Scholar 

  9. Hayyan, M., Mbous, Y.P., Looi, C.Y., Wong, W.F., Hayyan, A., Salleh, Z., Mohd-Ali, O.: Natural deep eutectic solvents: cytotoxic profile. SpringerPlus (2016). https://doi.org/10.1186/s40064-016-2575-9

    Article  Google Scholar 

  10. Yang, Z.: Toxicity and Biodegradability of Deep Eutectic Solvents and Natural Deep Eutectic Solvents. Wiley (2019). https://doi.org/10.1002/9783527818488.ch3

    Article  Google Scholar 

  11. Smith, E.L., Abbott, A.P., Ryder, K.S.: Deep eutectic solvents (dess) and their applications. Chem. Rev. 114(21), 11060–11082 (2014). https://doi.org/10.1021/cr300162p

    Article  Google Scholar 

  12. Panic, M., Bubalo, M.C., Redovnikovic, I.R.: Designing a biocatalytic process involving deep eutectic solvents. J. Chem. Technol. Biotechnol. 96(1), 14–30 (2020). https://doi.org/10.1002/jctb.6545

    Article  Google Scholar 

  13. Clarke, C.J., Tu, W.-C., Levers, O., Bröhl, A., Hallett, J.P.: Green and sustainable solvents in chemical processes. Chem. Rev. 118(2), 747–800 (2018). https://doi.org/10.1021/acs.chemrev.7b00571

    Article  Google Scholar 

  14. Abbott, A.P., Collins, J., Dalrymple, I., Harris, R.C., Mistry, R., Qiu, F., Scheirer, J., Wise, W.R.: Processing of electric arc furnace dust using deep eutectic solvents. Aust. J. Chem. 62(4), 341 (2009). https://doi.org/10.1071/ch08476

    Article  Google Scholar 

  15. Dai, Y., van Spronsen, J., Witkamp, G.-J., Verpoorte, R., Choi, Y.H.: Ionic liquids and deep eutectic solvents in natural products research: mixtures of solids as extraction solvents. J. Nat. Prod. 76(11), 2162–2173 (2013). https://doi.org/10.1021/np400051w

    Article  Google Scholar 

  16. Chen, Y.-L., Zhang, X., You, T.-T., Xu, F.: Deep eutectic solvents (DESs) for cellulose dissolution: a mini-review. Cellulose 26(1), 205–213 (2018). https://doi.org/10.1007/s10570-018-2130-7

    Article  Google Scholar 

  17. Zhao, H., Baker, G.A., Holmes, S.: New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel. Org. Biomol. Chem. 9(6), 1908 (2011). https://doi.org/10.1039/c0ob01011a

    Article  Google Scholar 

  18. Zhao, K.-H., Cai, Y.-Z., Lin, X.-S., Xiong, J., Halling, P., Yang, Z.: Enzymatic synthesis of glucose-based fatty acid esters in bisolvent systems containing ionic liquids or deep eutectic solvents. Molecules 21(10), 1294 (2016). https://doi.org/10.3390/molecules21101294

    Article  Google Scholar 

  19. Misan, A., Nadpal, J., Stupar, A., Pojic, M., Mandic, A., Verpoorte, R., Choi, Y.H.: The perspectives of natural deep eutectic solvents in agri-food sector. Crit. Rev. Food Sci. Nutr. 60(15), 2564–2592 (2019). https://doi.org/10.1080/10408398.2019.1650717

    Article  Google Scholar 

  20. Siebenhaller, S., Muhle-Goll, C., Luy, B., Kirschhöfer, F., Brenner-Weiss, G., Hiller, E., Günther, M., Rupp, S., Zibek, S., Syldatk, C.: Sustainable enzymatic synthesis of glycolipids in a deep eutectic solvent system. J. Mol. Catal. B: Enzym. 133, 281–287 (2016). https://doi.org/10.1016/j.molcatb.2017.01.015

    Article  Google Scholar 

  21. Kleiner, B., Schörken, U.: Native lipase dissolved in hydrophilic green solvents: a versatile 2-phase reaction system for high yield ester synthesis. Eur. J. Lipid Sci. Technol. 117(2), 167–177 (2015). https://doi.org/10.1002/ejlt.201400494

    Article  Google Scholar 

  22. Xu, P., Zheng, G.-W., Zong, M.-H., Li, N., Lou, W.-Y.: Recent progress on deep eutectic solvents in biocatalysis. Bioresour. Bioprocess. (2017). https://doi.org/10.1186/s40643-017-0165-5

    Article  Google Scholar 

  23. Nian, B., Cao, C., Liu, Y.: How candida antarctica lipase b can be activated in natural deep eutectic solvents: experimental and molecular dynamics studies. J. Chem. Technol. Biotechnol. 95(1), 86–93 (2019). https://doi.org/10.1002/jctb.6209

    Article  Google Scholar 

  24. Shehata, M., Unlu, A., Sezerman, U., Timucin, E.: Lipase and water in a deep eutectic solvent: Molecular dynamics and experimental studies of the effects of water-in-deep eutectic solvents on lipase stability. J. Phys. Chem. B 124(40), 8801–8810 (2020). https://doi.org/10.1021/acs.jpcb.0c07041

    Article  Google Scholar 

  25. Kovacs, A., Yusupov, M., Cornet, I., Billen, P., Neyts, E.C.: Effect of natural deep eutectic solvents of non-eutectic compositions on enzyme stability. J. Mol. Liq. 366, 120180 (2022). https://doi.org/10.1016/j.molliq.2022.120180

    Article  Google Scholar 

  26. Monhemi, H., Housaindokht, M.R., Moosavi-Movahedi, A.A., Bozorgmehr, M.R.: How a protein can remain stable in a solvent with high content of urea: insights from molecular dynamics simulation of candida antarctica lipase b in urea choline chloride deep eutectic solvent. Phys. Chem. Chem. Phys. 16(28), 14882 (2014). https://doi.org/10.1039/c4cp00503a

    Article  Google Scholar 

  27. Wu, B.-P., Wen, Q., Xu, H., Yang, Z.: Insights into the impact of deep eutectic solvents on horseradish peroxidase: activity, stability and structure. J. Mol. Catal. B: Enzym. 101, 101–107 (2014). https://doi.org/10.1016/j.molcatb.2014.01.001

    Article  Google Scholar 

  28. Gorke, J.T., Srienc, F., Kazlauskas, R.J.: Hydrolase-catalyzed biotransformations in deep eutectic solvents. Chem. Commun. (2008). https://doi.org/10.1039/b716317g

    Article  Google Scholar 

  29. Durand, E., Lecomte, J., Baréa, B., Piombo, G., Dubreucq, E., Villeneuve, P.: Evaluation of deep eutectic solvents as new media for candida antarctica b lipase catalyzed reactions. Process Biochem. 47(12), 2081–2089 (2012). https://doi.org/10.1016/j.procbio.2012.07.027

    Article  Google Scholar 

  30. Juneidi, I., Hayyan, M., Hashim, M.A., Hayyan, A.: Pure and aqueous deep eutectic solvents for a lipase-catalysed hydrolysis reaction. Biochem. Eng. J. 117, 129–138 (2017). https://doi.org/10.1016/j.bej.2016.10.003

    Article  Google Scholar 

  31. Goujard, L., Villeneuve, P., Barea, B., Lecomte, J., Pina, M., Claude, S., Petit, J.L., Ferré, E.: A spectrophotometric transesterification-based assay for lipases in organic solvent. Anal. Biochem. 385(1), 161–167 (2009). https://doi.org/10.1016/j.ab.2008.10.025

    Article  Google Scholar 

  32. Elgharbawy, A.A.: Shedding Light on Lipase Stability in Natural Deep Eutectic Solvents. Chemical and Biochemical Engineering Quarterly 32(3), 359–370 (2018). https://doi.org/10.15255/CABEQ.2018.1335. Accessed 28 Sept 2023

  33. Buzatu, A.R., Soler, M.A., Fortuna, S., Ozkilinc, O., Dreavă, D.M., Bîtcan, I., Badea, V., Giannozzi, P., Fogolari, F., Gardossi, L., Peter, F., Todea, A., Boeriu, C.G.: Reactive natural deep eutectic solvents increase selectivity and efficiency of lipase catalyzed esterification of carbohydrate polyols. Catal. Today 426, 114373 (2024). https://doi.org/10.1016/j.cattod.2023.114373. (Accessed 2023-10-03)

    Article  Google Scholar 

  34. Delavault, A., Opochenska, O., Laneque, L., Soergel, H., Muhle-Goll, C., Ochsenreither, K., Syldatk, C.: Lipase-Catalyzed Production of Sorbitol Laurate in a “2-in-1” Deep Eutectic System: Factors Affecting the Synthesis and Scalability. Molecules 26(9), 2759 (2021). https://doi.org/10.3390/molecules26092759. Accessed 03 Oct 2023

  35. Arcens, D., Grau, E., Grelier, S., Cramail, H., Peruch, F.: Impact of fatty acid structure on CALB-catalyzed esterification of glucose. Eur. J. Lipid Sci. Technol. 122(4), 1900294 (2020). https://doi.org/10.1002/ejlt.201900294. (Accessed 2023-09-28)

    Article  Google Scholar 

  36. Yadav, A., Pandey, S.: Densities and viscosities of choline chloride \(+\) urea deep eutectic solvent and its aqueous mixtures in the temperature range 293.15 k to 363.15 k. J. Chem. Eng. Data 59(7), 2221–2229 (2014). https://doi.org/10.1021/je5001796

    Article  Google Scholar 

  37. Kim, S.H., Park, S., Yu, H., Kim, J.H., Kim, H.J., Yang, Y.-H., Kim, Y.H., Kim, K.J., Kan, E., Lee, S.H.: Effect of deep eutectic solvent mixtures on lipase activity and stability. J. Mol. Catal. B: Enzym. 128, 65–72 (2016). https://doi.org/10.1016/j.molcatb.2016.03.012. (Accessed 2023-09-28)

    Article  Google Scholar 

  38. Hollenbach, R., Bindereif, B., Van Der Schaaf, U.S., Ochsenreither, K., Syldatk, C.: Optimization of glycolipid synthesis in hydrophilic deep eutectic solvents. Front. Bioeng. Biotechnol. 8, 382 (2020). https://doi.org/10.3389/fbioe.2020.00382. (Accessed 2023-09-28)

    Article  Google Scholar 

  39. Semproli, R., Chanquia, S.N., Bittner, J.P., Müller, S., Domínguez De María, P., Kara, S., Ubiali, D.: Deep Eutectic Solvents for the Enzymatic Synthesis of Sugar Esters: A Generalizable Strategy? ACS Sustainable Chemistry & Engineering 11(15), 5926–5936 (2023). https://doi.org/10.1021/acssuschemeng.2c07607. Accessed 28 Sept 2023

  40. Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., Sherman, W.: Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J. Chem. Theory Comput. 6(5), 1509–1519 (2010). https://doi.org/10.1021/ct900587b

    Article  Google Scholar 

  41. Abbas, U.L., Qiao, Q., Nguyen, M.T., Shi, J., Shao, Q.: Molecular dynamics simulations of heterogeneous hydrogen bond environment in hydrophobic deep eutectic solvents. AIChE J. (2021). https://doi.org/10.1002/aic.17382

    Article  Google Scholar 

Download references

Funding

This study was funded by University of Antwerp (Grant Number: BOF DOCPRO3 40005).

Author information

Authors and Affiliations

Authors

Contributions

AK and PB conceived and designed research. AK, NJ and MM conducted experiments and analyzed the results. AK wrote the original manuscript. PB, IC and EN reviewed and edited the manuscript. PB and IC acquired funding. PB, IC and EN supervised the research. All authors read and approved the manuscript.

Corresponding author

Correspondence to Attila Kovács.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1734 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovács, A., Janssens, N., Mielants, M. et al. Biocatalyzed Vinyl Laurate Transesterification in Natural Deep Eutectic Solvents. Waste Biomass Valor 15, 2807–2818 (2024). https://doi.org/10.1007/s12649-023-02331-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02331-0

Keywords

Navigation