Skip to main content

Advertisement

Log in

Recycling Waste Materials to Fabricate Solar-Driven Self-Cleaning Geopolymers

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The design of photocatalytic building materials based on geopolymers (GPs) through recycling industrial by-products is an up-and-coming technology that provide durability during environmental exposure. Thus, this work aimed to design, fabricate, and characterized photocatalytic geopolymers based on recycling industrial wastes (slags and fly ash) and TiO2 nanoparticles to propose a strategy to contribute to a circular economy. Taguchi L9 orthogonal design was used to optimize the formulation of GPs to obtain higher self-cleaning efficiency under solar light irradiation. The factors modified during the GPs fabrication were %TiO2, %fly ash, and temperature. The main products of the slag activation were calcium aluminosilicate hydrate and Zeolite X. The self-cleaning efficiency of the GPs was optimized through the signal-to-noise ratio (S/N): Larger is better, which conditions were 3 wt% of TiO2, 300 °C, and no-fly ash. After 3 days of solar light exposure, the optimal GP removes up to 88.4% of the pollutant from its surface, which evidences its self-cleaning activity under real outdoor conditions. Also, the GP fabricated under the optimal conditions generated hydroxyl radicals under solar light, which can open a window of possibilities to remove a wide range of atmospheric pollutants by recycling industrial by-products.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1

Similar content being viewed by others

Data Availability

The datasets generated will be available on request.

References

  1. Cong, P., Cheng, Y.: Advances in geopolymer materials: a comprehensive review. J. Traffic Transp. Eng. 8, 283 (2021)

    Google Scholar 

  2. Castillo, H., Collado, H., Droguett, T., Vesely, M., Garrido, P., Palma, S.: State of the art of geopolymers: a review. E-polymers 22, 108–124 (2022)

    Article  Google Scholar 

  3. Ionescu, B.A., Lăzărescu, A.-V., Hegyi, A.: The possibility of using slag for the production of geopolymer materials and its influence on mechanical performances—a review. Proceedings 63, 30 (2020)

    Google Scholar 

  4. Zhao, J., Tong, L., Li, B., Chen, T., Wang, C., Yang, G., Zheng, Y.: Eco-friendly geopolymer materials: a review of performance improvement, potential application and sustainability assessment. J. Clean Prod. 307, 127085 (2021)

    Article  Google Scholar 

  5. Turner, L.K., Collins, F.G.: Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Constr. Build Mater. 43, 125–130 (2013)

    Article  Google Scholar 

  6. Lahoti, M., Tan, K.H., Yang, E.-H.: A critical review of geopolymer properties for structural fire-resistance applications. Constr. Build Mater. 221, 514–526 (2019)

    Article  Google Scholar 

  7. Davidovits, J.: Geopolymers: ceramic-like inorganic polymers. J. Ceram. Sci. Technol. 8, 335–350 (2017)

    Google Scholar 

  8. Fiset, J., Cellier, M., Vuillaume, P.Y.: Macroporous geopolymers designed for facile polymers post-infusion. Cem. Concr. Compos. 110, 103591 (2020)

    Article  Google Scholar 

  9. Zhang, Y., Liu, L.: Fly ash-based geopolymer as a novel photocatalyst for degradation of dye from wastewater. Particuology 11, 353–358 (2013)

    Article  Google Scholar 

  10. Zailan, S.N., Mahmed, N., Abdullah, M.M.A.B., Rahim, S.Z.A., Halin, D.S.C., Sandu, A.V., Vizureanu, P., Yahya, Z.: Potential applications of geopolymer cement-based composite as self-cleaning coating: a review. Coatings 12, 133 (2022)

    Article  Google Scholar 

  11. Rabl, A.: Air pollution and buildings: an estimation of damage costs in France. Environ. Impact Assess. Rev. 19(4), 361–385 (1999)

    Article  Google Scholar 

  12. Zheng, S., Niu, L., Pei, P., Dong, J.: Mechanical behavior of Brick Masonryinan acidic atmospheric environment. Materials 12, 2694 (2019)

    Article  Google Scholar 

  13. Rodríguez-Alfaro, L.F., Torres-Martínez, L.M., Trevino-Garza, M.Z., Vazquez-Guillén, J.M., Rodríguez-Padilla, C., Luévano-Hipolito, E.: Exploring the self-cleaning and antimicrobial efficiency of the magnesium oxychloride cement composites. Ceram. Int. 49, 21370–21383 (2023)

    Article  Google Scholar 

  14. Choi, H.-J., Yoo, D.-Y., Park, G.-J., Park, J.-J.: Photocatalytic high-performance fiber-reinforced cement composites with white Portland cement, titanium dioxide, and surface treated polyethylene fibers. J. Mater. Res. Technol. 15, 785–800 (2021)

    Article  Google Scholar 

  15. Mansoor, A., Khan, M.T., Mehmood, M., Khurshid, Z., Ali, M.I., Jamal, A.: Synthesis and characterization of titanium oxide nanoparticles with a novel biogenic process for dental application. Nanomaterials 12(7), 1078 (2022)

    Article  Google Scholar 

  16. Zailan, S.N., Bouaissi, A., Mahmed, N., Abdullah, M.M.A.B.: Infuence of ZnO nanoparticles on mechanical properties and photocatalytic activity of self-cleaning ZnO–based geopolymer paste. J. Inorg. Organomet. Polym. Mater. 30, 2007–2016 (2020)

    Article  Google Scholar 

  17. Vizureanu, P., Samoilă, C., Cotfas, D.: Materials processing using solar energy. Environ. Eng. Manag. J. 8(2), 301–306 (2009)

    Article  Google Scholar 

  18. Vizureanu, P.: The analysis of the melting process of the materials in the solar furnaces. Metal Int. 14(5), 5–9 (2009)

    Google Scholar 

  19. Chen, Y.-W., Hsu, Y.-H.: Effects of reaction temperature on the photocatalytic activity of TiO2 with pd and Cu cocatalysts. Catalysts 11(8), 966 (2021)

    Article  Google Scholar 

  20. Saeli, M., Piccirillo, C., Tobaldi, D.M., Binions, R., Castro, P.M.L., Pullar, R.C.: A sustainable replacement for TiO2 in photocatalyst construction materials: hydroxyapatite-based photocatalytic additives, made from the valorisation of food wastes of marine origin. J. Clean Prod. 193, 115–127 (2018)

    Article  Google Scholar 

  21. Ambikakumari Sanalkumar, K.U., Yang, E.-H.: Self-cleaning performance of nano-TiO2 modified metakaolin-based geopolymers. Cem. Concr. Compos. 115, 103847 (2021)

    Article  Google Scholar 

  22. Assi, L.N., Majdi, L.E.A., Alhamadani, Y., Ziehl, P.: Early properties of concrete with alkali-activated fly ash as partial cement replacement. Proc. Inst. Civ. Eng. Constr. 174, 13–20 (2021)

    Google Scholar 

  23. Skvára F., losar J., Bohunek J., Marková A.: Alkali-activated fly ash geopolymeric materials. Proceedings of the 11th International Congress on the Chemistry of Cement 1–10 (2023)

  24. Mitra, A.: The Taguchi method, Wiley interdiscip. Rev. Comput. Stat. 3(5), 472–480 (2011)

    Google Scholar 

  25. Aoudjit, L., Salazar, H., Zioui, D., Sebti, A., Martins, P.M., Lanceros-Méndez, S.: Solar photocatalytic membranes: an experimental and artificial neural network modeling approach for niflumic acid degradation. Membranes 12(9), 849 (2022)

    Article  Google Scholar 

  26. Avargani, V.M., Zendehboudi, S., Osfouri, S., Rostami, A.: Performance evaluation of a solar nano-photocatalytic reactor for wastewater treatment applications: reaction kinetics, CFD, and scale-up perspectives. J. Clean Prod. 421, 138240 (2023)

    Article  Google Scholar 

  27. Puertas, F., Palacios, M., Manzano, H., Dolado, J.S., Rico, A., Rodríguez, J.A.: A model for the C-A-S-H gel formed in alkali-activated slag cements. J. Eur. Ceram. Soc. 31, 2043–2056 (2011)

    Article  Google Scholar 

  28. Nath, S.K., Maitra, S., Mukherjee, S., Kumar, S.: Microstructural and morphological evolution of fly ash based geopolymers. Constr. Build Mater. 111, 758–765 (2016)

    Article  Google Scholar 

  29. Wan, Q., Rao, F., Song, S., Zhang, Y.: Immobilization forms of ZnO in the solidification/stabilization (S/S) of a zinc mine tailing through geopolymerization. J. Mater. Res. Technol. 8, 5728–5735 (2019)

    Article  Google Scholar 

  30. Karim, M.R.A., Haq, E.U., Hussain, M.A., Khan, K.I., Nadeem, M., Atif, M., Haq, A.U., Naveed, M., Alam, M.M.: Experimental evaluation of sustainable geopolymer mortars developed from loam natural soil. J. Asian Archit. Build. Eng. 19, 637–646 (2019)

    Article  Google Scholar 

  31. Haq, E.U., Padmanabhan, S.K., Licciulli, A.: In-situ carbonation of alkali activated fly ash geopolymer. Constr. Build Mater. 66, 781–786 (2014)

    Article  Google Scholar 

  32. Kugler, F., Fehn, T., Sandner, M., Krcmar, W., Teipel, U.: Microstructural and mechanical properties of geopolymers based on brick scrap and fly ash. Ceram. Eng. Sci. 4(2), 92–101 (2022)

    Google Scholar 

  33. Surakasi, R., Sripathi, S., Nadimpalli, S.P., Afzal, S., Singh, B., Tripathi, M., Hafa, R.A.: Synthesis and characterization of TiO2-water nanofluids. Adsorpt. Sci. Technol. 2022, 1–9 (2022)

    Article  Google Scholar 

  34. Pimraksa, K., Setthaya, N., Thala, M., Chindaprasirt, P., Murayama, M.: Geopolymer/zeolite composite materials with adsorptive and photocatalytic properties for dye removal. PLoS One 15(10), e0241603 (2023)

    Article  Google Scholar 

  35. Jaramillo-Fierro, X., Gaona, S., Ramón, J., Valarezo, E.: Porous geopolymer/ZnTiO3/TiO2 composite for adsorption and photocatalytic degradation of methylene blue dye. Polymers 15(12), 2697 (2023)

    Article  Google Scholar 

  36. Luévano-Hipólito, E., Torres-Martínez, L.M., Vega-Mendoza, M.S., Treviño-Garza, M.Z., Vázquez-Guillén, J.M., Báez González, J.G., Rodríguez-Padilla, C.: Photocatalytic performance of alkali-activated materials functionalized with β-Bi2O3/Bi2O2CO3 heterostructures for environmental remediation. Constr. Build Mater. 320, 126205 (2022)

    Article  Google Scholar 

  37. Jun, Y., Li, Z., Liu, C., Ni, L.L., Wang, B.L.: A facile and low-cost synthesis of granulated blast furnace slag-based cementitious material coupled with Fe2O3 catalyst for treatment of dye wastewater. Appl. Catal. B Environ. 138–139, 9–16 (2013)

    Google Scholar 

  38. Mushtaq, F., Zahid, M., Bhatti, I.A., Nasir, S., Hussain, T.: Possible applications of coal fly ash in wastewater treatment. J. Environ. Manage 240, 27–46 (2019)

    Article  Google Scholar 

  39. Lucas, M.S., Peres, J.A.: Decolorization of the azo dye reactive black 5 by fenton and photo-fenton oxidation. Dyes Pigm. 71, 236–244 (2006)

    Article  Google Scholar 

  40. Rao, M.P., Wu, J.J., Syed, A., Ameen, F., Anandan, S.: Synthesis of Dandelion—like CuO microspheres for photocatalytic degradation of reactive black-5. Mater. Res. Express. 5, 015053 (2018)

    Article  Google Scholar 

  41. Liu, F., Wang, X., Liu, Z., Miao, F., Xu, Y., Zhang, H.: Peroxymonosulfate enhanced photocatalytic degradation of reactive black 5 by ZnO-GAC: key influencing factors, stability and response surface approach. Sep. Purif. Technol. 279, 119754 (2021)

    Article  Google Scholar 

  42. Zhao, D., Gao, Y., Nie, S., Liu, Z., Wang, F., Liu, P., Hu, S.: Self-assembly of honeycomb-like calcium-aluminum-silicate-hydrate (C-A-S-H) on ceramsite sand and its application in photocatalysis. Chem. Eng. J. 344, 583–593 (2018)

    Article  Google Scholar 

  43. Vega-Mendoza, M.S., Luévano-Hipólito, E., Torres-Martínez, L.M.: Design and fabrication of photocatalytic coatings with α/β-Bi2O3 and recycled-fly ash for environmental remediation and solar fuel generation. Ceram. Int. 47, 26907–26918 (2021)

    Article  Google Scholar 

  44. Palanivel, B., Hu, C., Shkir, M., AlFaify, S., Ibrahim, F.A., Hamdy, M.S., Mani, A.: Fluorine doped g-C3N4 coupled NiFe2O4 heterojunction: consumption of H2O2 for production of hydroxyl radicals towards paracetamol degradation. Colloid Interface Sci. Commun. 42, 100410 (2021)

    Article  Google Scholar 

  45. Abdila, S.R., Abdullah, M.M.A.B., Ahmad, R., Nergis, D.D.B., Rahim, S.Z.A., Omar, M.F., Sandu, A.V., Vizureanu, P., Syafwandi: potential of soil stabilization using ground granulated blast furnace slag (GGBFS) and fly ash via geopolymerization method: a review. Materials 15(1), 375 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank CONACYT for financial support of this research through the projects: Cátedras CONACYT 1060 and Paradigmas y Fronteras de la Ciencia 320379. Also, the authors want to thank Carolina Itzel Cardona Martinez for participate in the early stage of this project in the Scientific Summer Student Program UANL PROVERICYT 2021. The slags used for this project were kindly provided by Dr. Juan Antonio López Corpus and Ing. Miguel Angel Gomez Lopez of AHMSA®.

Funding

Funding was supported by Consejo Nacional de Ciencia y Tecnología (Grant No. Paradigmas y Fronteras de la Ciencia 320379).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Luévano-Hipólito.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 196.8 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luévano-Hipólito, E., Torres-Martínez, L.M. & Rodríguez-González, E. Recycling Waste Materials to Fabricate Solar-Driven Self-Cleaning Geopolymers. Waste Biomass Valor 15, 2833–2843 (2024). https://doi.org/10.1007/s12649-023-02309-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02309-y

Keywords

Navigation