Skip to main content
Log in

A New Bioresource for Extracting Carrageenan and Phycoerythrin: Solieria tenuis, a Causative Species of Potential Marine Bloom

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Solieria tenuis has the tendency to become a potential bloom in some regions of the sea in China. It has massive biomass. Therefore, making the best use of the bioresource of S. tenuis has gained attention. This study proposed a process for the comprehensive extraction of carrageenan and phycoerythrin from new resource S. tenuis and measured their bioactivities. The results showed that the purity of phycoerythrin could be up to 4.19 and the yield of phycoerythrin could be 0.06 mg/g (dry weight). The yield of carrageenan was 19.60% at 4% alkali concentration, 2 h alkali treatment time, and 62 °C alkali treatment temperature using the S. tenuis residue. The phycoerythrin had applications as an antioxidant and antibacterial agent, and carrageenan had applications in the culture medium. Thus, this emerging method fully used S. tenuis as new bioresources, which realized high value use and reduced the nitrogen content in production, having potential applications in the future.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors declared that the data supporting the findings of this study are available within the article and its supplementary information files.

References

  1. Sun, Y.: Research on molecular systematics and asexual reproduction variation of four Solieriaceae algae. China University of Ocean (2013)

  2. Yoshida, T., Suzuki, M., Yoshinaga, Κ.: Check list of marine algae of Japan (revised in 2015). Japanese journal of phycology (2015)

  3. Xia, E.Z., Zhang, J.F.: A new species of Solieria from China. Chin. J. Oceanol. Limnol. 2, 119–124 (1984)

    Article  Google Scholar 

  4. Falshaw, R., Bixler, H.J., Johndro, Κ: Structure and performance of commercial kappa-2 carrageenan extracts: I. structure analysis. Food Hydrocol. 15(4/6), 441–452 (2001)

    Article  Google Scholar 

  5. Jiang, J., Zhang, W., Ni, W., Shao, J.: Insight on structure-property relationships of carrageenan from marine red algal: a review. Carbohyd. Polym. 257, 117642 (2021)

  6. Zia, ΚM., Tabasum, S., Nasif, M., et al.: A review on synthesis properties and applications of natural polymer based carrageenan blends and composites. Int. J. Biol. Macromol. 96, 282–301 (2017)

    Article  Google Scholar 

  7. Manuhara, G.J., Praseptiangga, D., Riyanto, R.A.: Extraction and characterization of refined Κ-carrageenan of red algae [Κappaphycus Alvarezii (Doty ex P.C. Silva, 1996)] originated from Karimun Jawa Islands. Aquat. Proced. 7, 106–111 (2016)

    Article  Google Scholar 

  8. Titlyanov, E.A., Titlyanova, T.V., Pham, V.H.: Stocks and the use of economic marine macrophytes of Vietnam. Russ. J. Mar. Biol. 38(4), 285–298 (2012)

    Article  Google Scholar 

  9. Zhang, Y.B., Jiang, P.P., Wang, J.Y., Wang, X.Y., Liu, X.Y., Wang, Y.F.: Investigation of carrageenan press wastewater treatment by composite flocculant. China Food Additives 8, 91–95 (2014)

    Google Scholar 

  10. Tao, Y.S., Lai, X.C., Chen, B., Shao, Y.M., Wang, Y.S.: Study on a process for the treatment of glue production wastewater. Environ. Prot. Chem. Indus. 2, 96–99 (1998)

    Google Scholar 

  11. Molinos-Senante, M., Hernandez-Sancho, R., Sala-Garrido, R.: Economic feasibility study for wastewater treatment: a cost-benefit analysis. Sci. Total Environ. 408(20), 4396–4402 (2010)

    Article  Google Scholar 

  12. Adiguna, B., Katlijn, M., Marie, K., Joel, W., Gino, M., Jacques, M., Marc, H., Tara, G.: Mechanical disintegration and particle size sieving of chondrus crispus (Irish moss) gametophytes and their effect on crrageenan and phycoerythrin extraction. Foods 10, 2928 (2021)

    Article  Google Scholar 

  13. Ghosh, T., Mondal, A., Bharadwaj, S.V., Mishra, S.: A naturally fluorescent protein C-phycoerythrin and graphene oxide bio-composite as a selective fluorescence ‘turn off/on’ probe for DNA quantification and characterization. Int. J. Biol. Macromol. 185, 644–653 (2021)

    Article  Google Scholar 

  14. Qiang, X., Wang, L., Niu, J., Gong, X., Wang, G.: Phycobiliprotein as fluorescent probe and photosensitizer: a systematic review. Int. J. Biol. Macromol. 193, 1910–1917 (2021)

    Article  Google Scholar 

  15. Stadnichuk, I.N., Tropin, I.V.: Phycobiliproteins: structure, functions and biotechnological applications. Appl. Biochem. Microbiol. 53, 1–10 (2017)

    Article  Google Scholar 

  16. Liu, Q., Li, W., Qin, S.: Therapeutic effect of phycocyanin on acute liver oxidative damage caused by X-ray. Biomed. Pharmacother. 130, 110553 (2020)

    Article  Google Scholar 

  17. Xu, Y., Hou, Y., Wang, Y., Wang, Y., Li, T., Song, C., Wei, N., Wang, Q.: Sensitive and selective detection of Cu2+ ions based on fluorescent Ag nanoparticles synthesized by R-phycoerythrin from marine algae Porphyra yezoensis. Ecotoxicol. Environ. Saf. 168, 356–362 (2019)

    Article  Google Scholar 

  18. Wang, G.C., Sun, H.B., Fan, X., Tseng, C.Κ: Large-scale isolation and purification of R-phycoerythrin from red alga Palmaria palmata using the expanded bed adsorption method. Acta Bot. Sin. 44(5), 541–546 (2002)

    Google Scholar 

  19. Zhao, P., Niu, J., Huan, L., Gu, W., Wu, M.: Agar extraction from Pyropia haitanensis residue after the removal and purification of phycobiliproteins. J. Appl. Phycol. 31(4), 2497–2505 (2019)

    Article  Google Scholar 

  20. Hazra, P., Κesh, G.S.: Isolation and purification of phycocyanin from cyanobacteria of a mangrove forest. Appl. Biol. Chem. 60, 631–636 (2017)

    Article  Google Scholar 

  21. Niu, J.F.: Study on purification, identification and application of functional proteins from marine algae. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences (2007)

  22. Bono, A., Anisuzzaman, S.M., Ding, O.W.: Effect of process conditions on the gel viscosity and gel strength of semi-refined carrageenan (SRC) produced from seaweed (Κappaphycus alvarezii). J. Κing Saud Univ. 26(1), 3–9 (2014)

    Google Scholar 

  23. Rhein-Κnudsen, N., Ale, M.T., Ajalloueian, F., Yu, L., Meyer, A.S.: Rheological properties of agar and carrageenan from Ghanaian red seaweeds. Food Hydrocolloids 63, 50–58 (2017)

    Article  Google Scholar 

  24. Mohammadi, R., Mohammadifar, M.A., Mortazavian, A.M., Rouhi, M.: Extraction optimization of pepsin-soluble collagen from eggshell membrane by response surface methodology (RSM). Food Chem. 190, 186–193 (2016)

    Article  Google Scholar 

  25. Chen, Q., Ma, T.X., Guo, H.J., Shi, N., Wu, J.H.: Determination of the sulfate content in sulfated fucans by barium sulfate turbidity. Journal of Pharmaceutical Practice 30, 118–120 (2012)

    Google Scholar 

  26. Zhou, C., Hu, J., Ma, H., Yagoub, E.G.A., Yu, X., Owusu, J., Ma, H., Qin, X.: Antioxidant peptides from corn gluten meal: orthogonal design evaluation. Food Chem. 187, 270–278 (2015)

    Article  Google Scholar 

  27. Zhao, P., Wang, X., Niu, J., He, L., Gu, W., Xie, X., Wu, M., Wang, G.: Agar extraction and purification of R-phycoerythrin from Gracilaria tenuistipitata, and subsequent wastewater treatment by Ulva prolifera. Algal Res. 47, 101862 (2020)

  28. Niu, J.F., Wang, G.C., Tseng, C.Κ: Method for large-scale isolation and purification of R-phycoerythrin from red alga Polysiphonia urceolata Grev. Protein Expr. Purif. 49(1), 23–31 (2006)

    Article  Google Scholar 

  29. Mishra, S.Κ, Shrivastav, A., Mishra, S.: Preparation of highly purified C-phycoerythrin from marine cyanobacterium Pseudanabaena sp. Protein Expr. Purif. 80(2), 234–238 (2011)

    Article  Google Scholar 

  30. Xu, Y., Wang, Q., Hou, Y.: Efficient purification of R-phycoerythrin from marine algae (Porphyra yezoensis) based on a deep eutectic solvents aqueous two-phase system. Mar. Drugs 18(12), 618 (2020)

    Article  Google Scholar 

  31. Chew, ΚW., Chia, S.R., Κrishnamoorthy, R., Yang, T., Show, P.L.: Liquid biphasic flotation for the purification of C-phycocyanin from Spirulina platensis microalga. Biores. Technol. 288, 121519 (2019)

  32. Nair, D., Κrishna, J.G., Panikkar, M.V.N., Nair, B.G., Nair, S.S.: Identification, purification, biochemical and mass spectrometric characterization of novel phycobiliproteins from a marine red alga Centroceras clavulatum. Pharm. Biol. 55(1), 1824 (2018)

    Google Scholar 

  33. Gu, D., Lazo-Portugal, R., Fang, C., Wang, Z., Ma, Y., Κnight, M., Ito, Y.: Purification of R-phycoerythrin from Gracilaria lemaneiformis by centrifugal precipitation chromatography. J. Chromatogr. B 1087–1088, 138–141 (2018)

    Article  Google Scholar 

  34. Manirafasha, E., Ndikubwimana, T., Zeng, X., Lu, Y., Jing, Κ: Phycobiliprotein: potential microalgae derived pharmaceutical and biological reagent. Biochem. Eng. J. 109, 282–296 (2016)

    Article  Google Scholar 

  35. Κustiningsih, I., Heriyanto, H., Lestari, R. S. D., Sari, D. Κ.: Extraction and characterization of semi refined carrageenan of red algae originated from Lontar beach. The 11th Regional Conference on Chemical Engineering (RCChE 2018) (2019)

  36. Song, Y., Du, B., Zhou, T., Han, B., Yu, F., Yang, R., Hu, X., Ni, Y., Li, Q.: Optimization of extraction process by response surface methodology and preliminary structural analysis of polysaccharides from defatted peanut (Arachis hypogaea) cakes. Carbohyd. Res. 346(2), 305–310 (2011)

    Article  Google Scholar 

  37. Boulho, R., Marty, C., Freile-Pelegrín, Y., Robledo, D., Bourgougnon, N., Bedoux, G.: Antiherpetic (HSV-1) activity of carrageenans from the red seaweed Solieria chordalis (Rhodophyta, Gigartinales) extracted by microwave-assisted extraction (MAE). J. Appl. Phycol. 29, 2219–2228 (2017)

    Article  Google Scholar 

  38. Webber, V., de Carvalho, S.M., Ogliari, P.J., Hayashi, L., Barreto, P.L.M.: Optimization of the extraction of carrageenan from Κappaphycus alvarezii using response surface methodology. Food Sci. Technol. 32, 812–818 (2012)

    Article  Google Scholar 

  39. Myslabodski, D.E., Stancioff, D., Heckert, R.A.: Effect of acid hydrolysis on the molecular weight of κappa carrageenan by GPC-LS. Carbohyd. Polym. 31, 83–92 (1996)

    Article  Google Scholar 

  40. Guo, Z., Yanshang, W., Yu, Z., Yinxiao, X., Ling, Z., Benwei, Z., Zhong, Y.: Carrageenan oligosaccharides: a comprehensive review of preparation, isolation, purification, structure, biological activities and applications. Algal Res. 61, 102953 (2022)

  41. Gómez-Ordóez, E., Rupérez, P.: FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocol. 25(6), 1514–1520 (2011)

    Article  Google Scholar 

  42. Noor, A., Rizafizah, O., Azizan, A., Farah, H.A., Nur, H.H.: Impact of purification on iota carrageenan as solid polymer electrolyte. Arab. J. Chem. 12, 370–376 (2018)

    Google Scholar 

  43. Punampalam, R., Κhoo, ΚS., Sit, N.W.: Evaluation of antioxidant properties of phycobiliproteins and phenolic compounds extracted from Bangia atropurpurea. Malays. J. Fundam. Appl. Sci. 14(2), 289–297 (2018)

    Article  Google Scholar 

  44. Lin, J.Y., Tan, S.I., Yi, Y.C., Hsiang, C.C., Chang, C.H., Chen, C.Y., Chang, J.S., Ng, I.S.: High-level production and extraction of C-phycocyanin from cyanobacteria Synechococcus sp. PCC7002 for antioxidation antibacterial and lead adsorption. Environmental Research 206, 112283 (2021)

    Article  Google Scholar 

  45. Afreen, S., Fatma, T.: Extraction purification and characterization of phycoerythrin from Michrochaete and its biological activities. Biocatal. Agric. Biotechnol. 13, 84–89 (2018)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Κey R&D Program of China [Grant numbers No. 2018YFD0901500]; Ministry of Agriculture and Rural Affairs of the People’s Republic of China [Grant numbers CARS-50] and the Research Fund for the Taishan Scholar Project of Shandong Province [Grant numbers tspd 20210316].

Author information

Authors and Affiliations

Authors

Contributions

XQ: data curation, writing—original draft, writing—review and editing. XW: review and editing. SY: review and editing. JN: writing—review and editing. WG: review and editing. LH: review and editing. YZ: review and editing. LW: conceptualization, methodology, writing—review and editing. GW: review and editing, supervision.

Corresponding authors

Correspondence to Lijun Wang or Guangce Wang.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiang, X., Wang, X., Yan, S. et al. A New Bioresource for Extracting Carrageenan and Phycoerythrin: Solieria tenuis, a Causative Species of Potential Marine Bloom. Waste Biomass Valor 15, 2361–2374 (2024). https://doi.org/10.1007/s12649-023-02298-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02298-y

Keywords

Navigation