Skip to main content
Log in

Degradation Performance of Estrogen During Anaerobic Digestion of Pig Manure

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

A large amount of estrogen is introduced into the feed to improve livestock growth, excessive residual estrogen would exist in the excrements. The accumulation of estrogen can cause the water and soil pollution around the farm, further inhibit growth and induce caner for organisms and human. Anaerobic digestion (AD) could effectively remove estrogen in livestock manure while the mechanism is still unclear. In this study, the mechanism of estrogen removal by AD was explored during AD process of pig manure. Estrone (E1), estradiol (E2) estriol (E3) and ethinylestradiol (EE2) were selected as research subjects. The removal rates of E1, E2, E3 and EE2 were 19.14, 28.62, 25.83 and 11.81%. Dissolved organic matters (DOM), especially humic acid, play an important role in reducing bioavailability of estrogen. Estrogen will be absorbed by DOM through structures such as aromatic ring and amides. Estrogen may also promote the growth of microorganisms which could degrade estrogen, such as Rhodococcus, Sphingomonas and Pseudomonas. The amount of these microorganisms and dissolved microbial metabolites did not change obviously. This study would give a new explanation for the removal of estrogen and can provide theoretical support for harmless treatment of pig manure.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during the current study are not publicly available due to time limitations but are available from the corresponding author on reasonable request.

References

  1. Bartelt-Hunt, S.L., Snow, D.D., Kranz, W.L., Mader, T.L., Shapiro, C.A., van Donk, S.J., Shelton, D.P., Tarkalson, D.D., Zhang, T.C.: Effect of growth promotants on the occurrence of endogenous and synthetic steroid hormones on feedlot soils and in runoff from beef cattle feeding operations. Environ. Sci. Technol. 46, 1352–1360 (2012). https://doi.org/10.1021/es202680q

    Article  Google Scholar 

  2. Wei, Z., Wang, J.J., Fultz, L.M., White, P., Jeong, C.: Application of biochar in estrogen hormone-contaminated and manure-affected soils: impact on soil respiration, microbial community and enzyme activity. Chemosphere 270, 128625 (2021). https://doi.org/10.1016/j.chemosphere.2020.128625

    Article  Google Scholar 

  3. Li, C., Li, Y., Li, X., Ma, X., Ru, S., Qiu, T., Lu, A.: Veterinary antibiotics and estrogen hormones in manures from concentrated animal feedlots and their potential ecological risks. Environ. Res. 198, 110463 (2021). https://doi.org/10.1016/j.envres.2020.110463

    Article  Google Scholar 

  4. Conley, J.M., Evans, N., Cardon, M.C., Rosenblum, L., Iwanowicz, L.R., Hartig, P.C., Schenck, K.M., Bradley, P.M., Wilson, V.S.: Occurrence and in vitro bioactivity of estrogen, androgen, and glucocorticoid compounds in a nationwide screen of United States stream waters. Environ. Sci. Technol. 51, 4781–4791 (2017). https://doi.org/10.1021/acs.est.6b06515

    Article  Google Scholar 

  5. Palme, R., Fischer, P., Schildorfer, H., Ismail, M.N.: Excretion of infused 14C-steroid hormones via faeces and urine in domestic livestock. Anim. Reprod. Sci. 43, 43–63 (1996). https://doi.org/10.1016/0378-4320(95)01458-6

    Article  Google Scholar 

  6. Lee, B., Kullman, S.W., Yost, E.E., Worley-Davis, L., Reckhow, K.H.: An object-oriented Bayesian network approach for establishing swine manure-borne natural estrogenic compounds budget. Sci. Total Environ. 639, 815–825 (2018). https://doi.org/10.1016/j.scitotenv.2018.05.209

    Article  Google Scholar 

  7. Douglas, P., Robertson, S., Gay, R., Hansell, A.L., Gant, T.W.: A systematic review of the public health risks of bioaerosols from intensive farming. Int. J. Hyg. Environ. Health 221, 134–173 (2018). https://doi.org/10.1016/j.ijheh.2017.10.019

    Article  Google Scholar 

  8. Tao, H., Zhang, J., Shi, J., Guo, W., Liu, X., Zhang, M., Ge, H., Li, X.: Occurrence and emission of phthalates, bisphenol A, and oestrogenic compounds in concentrated animal feeding operations in Southern China. Ecotoxicol. Environ. Saf. 207, 111521 (2021). https://doi.org/10.1016/j.ecoenv.2020.111521

    Article  Google Scholar 

  9. Zhao, X., Grimes, K.L., Colosi, L.M., Lung, W.-S.: Attenuation, transport, and management of estrogens: a review. Chemosphere 230, 462–478 (2019). https://doi.org/10.1016/j.chemosphere.2019.05.086

    Article  Google Scholar 

  10. Bertin, A., Damiens, G., Castillo, D., Figueroa, R., Minier, C., Gouin, N.: Developmental instability is associated with estrogenic endocrine disruption in the Chilean native fish species, Trichomycterus areolatus. Sci. Total Environ. 714, 136638 (2020). https://doi.org/10.1016/j.scitotenv.2020.136638

    Article  Google Scholar 

  11. Czarny, K., Szczukocki, D., Krawczyk, B., Zieliński, M., Miękoś, E., Gadzała-Kopciuch, R.: The impact of estrogens on aquatic organisms and methods for their determination. Crit. Rev. Environ. Sci. Technol. 47, 909–963 (2017). https://doi.org/10.1080/10643389.2017.1334458

    Article  Google Scholar 

  12. Li, M., Sun, L., Wang, D.: Roles of estrogens in fish sexual plasticity and sex differentiation. Gen. Comp. Endocrinol. 277, 9–16 (2019). https://doi.org/10.1016/j.ygcen.2018.11.015

    Article  Google Scholar 

  13. Liu, S., Gao, H., Dong, Q., Su, Y., Dai, T., Qin, Z., Yang, Y., Gao, Q.: Bacteria are better predictive biomarkers of environmental estrogen transmission than fungi. Environ. Pollut. 298, 118838 (2022). https://doi.org/10.1016/j.envpol.2022.118838

    Article  Google Scholar 

  14. Wocławek-Potocka, I., Mannelli, C., Boruszewska, D., Kowalczyk-Zieba, I., Waśniewski, T., Skarżyński, D.J.: Diverse effects of phytoestrogens on the reproductive performance: cow as a model. Int. J. Endocrinol. 2013, 650984 (2013). https://doi.org/10.1155/2013/650984

    Article  Google Scholar 

  15. Odinga, E.S., Zhou, X., Mbao, E.O., Ali, Q., Waigi, M.G., Shiraku, M.L., Ling, W.: Distribution, ecological fate, and risks of steroid estrogens in environmental matrices. Chemosphere 308, 136370 (2022). https://doi.org/10.1016/j.chemosphere.2022.136370

    Article  Google Scholar 

  16. Khanal, S.K., Xie, B., Thompson, M.L., Sung, S., Ong, S.-K., van Leeuwen, J.: (Hans): fate, transport, and biodegradation of natural estrogens in the environment and engineered systems. Environ. Sci. Technol. 40, 6537–6546 (2006). https://doi.org/10.1021/es0607739

    Article  Google Scholar 

  17. Yang, S., Yu, W., Yang, L., Du, B., Chen, S., Sun, W., Jiang, H., Xie, M., Tang, J.: Occurrence and fate of steroid estrogens in a Chinese typical concentrated dairy farm and slurry irrigated soil. J. Agric. Food Chem. 69, 67–77 (2021). https://doi.org/10.1021/acs.jafc.0c05068

    Article  Google Scholar 

  18. Furuichi, T., Kannan, K., Suzuki, K., Tanaka, S., Giesy, J.P., Masunaga, S.: Occurrence of estrogenic compounds in and removal by a swine farm waste treatment plant. Environ. Sci. Technol. 40, 7896–7902 (2006). https://doi.org/10.1021/es0609598

    Article  Google Scholar 

  19. Zhang, Q., Zhao, J.-L., Ying, G.-G., Liu, Y.-S., Pan, C.-G.: Emission estimation and multimedia fate modeling of seven steroids at the river basin scale in China. Environ. Sci. Technol. 48, 7982–7992 (2014). https://doi.org/10.1021/es501226h

    Article  Google Scholar 

  20. Khan, B., Lee, L.S.: Estrogens and synthetic androgens in manure slurry from trenbolone acetate/estradiol implanted cattle and in waste-receiving lagoons used for irrigation. Chemosphere 89, 1443–1449 (2012). https://doi.org/10.1016/j.chemosphere.2012.06.015

    Article  Google Scholar 

  21. Arcanjo, G.S., dos Santos, C.R., Cavalcante, B.F., de Moura, G.A., Ricci, B.C., Mounteer, A.H., Santos, L.V.S., Queiroz, L.M., Amaral, M.C.S.: Improving biological removal of pharmaceutical active compounds and estrogenic activity in a mesophilic anaerobic osmotic membrane bioreactor treating municipal sewage. Chemosphere 301, 134716 (2022). https://doi.org/10.1016/j.chemosphere.2022.134716

    Article  Google Scholar 

  22. Jarošová, B., Filip, J., Hilscherová, K., Tuček, J., Šimek, Z., Giesy, J.P., Zbořil, R., Bláha, L.: Can zero-valent iron nanoparticles remove waterborne estrogens? J. Environ. Manag. 150, 387–392 (2015). https://doi.org/10.1016/j.jenvman.2014.12.007

    Article  Google Scholar 

  23. Bayode, A.A., dos Santos, D.M., Omorogie, M.O., Olukanni, O.D., Moodley, R., Bodede, O., Agunbiade, F.O., Taubert, A., de Camargo, A.S.S., Eckert, H., Vieira, E.M., Unuabonah, E.I.: Carbon-mediated visible-light clay-Fe2O3–graphene oxide catalytic nanocomposites for the removal of steroid estrogens from water. J. Water Process Eng. 40, 101865 (2021). https://doi.org/10.1016/j.jwpe.2020.101865

    Article  Google Scholar 

  24. Hu, J., Li, T., Zhao, Y., Zhang, X., Ren, H., Huang, H.: A novel in-situ enhancement strategy of denitrification biofilter for simultaneous removal of steroid estrogens and total nitrogen from low C/N wastewater. Chem. Eng. J. 452, 138896 (2023). https://doi.org/10.1016/j.cej.2022.138896

    Article  Google Scholar 

  25. Nghiem, L.D., Manis, A., Soldenhoff, K., Schäfer, A.I.: Estrogenic hormone removal from wastewater using NF/RO membranes. J. Membr. Sci. 242, 37–45 (2004). https://doi.org/10.1016/j.memsci.2003.12.034

    Article  Google Scholar 

  26. Dscenzo, G., Di Corcia, A., Gentili, A., Mancini, R., Mastropasqua, R., Nazzari, M., Samperi, R.: Fate of natural estrogen conjugates in municipal sewage transport and treatment facilities. Sci. Total Environ. 302, 199–209 (2003). https://doi.org/10.1016/S0048-9697(02)00342-X

    Article  Google Scholar 

  27. Paterakis, N., Chiu, T.Y., Koh, Y.K.K., Lester, J.N., McAdam, E.J., Scrimshaw, M.D., Soares, A., Cartmell, E.: The effectiveness of anaerobic digestion in removing estrogens and nonylphenol ethoxylates. J. Hazard. Mater. 199–200, 88–95 (2012). https://doi.org/10.1016/j.jhazmat.2011.10.075

    Article  Google Scholar 

  28. Noguera-Oviedo, K., Aga, D.S.: Chemical and biological assessment of endocrine disrupting chemicals in a full scale dairy manure anaerobic digester with thermal pretreatment. Sci. Total Environ. 550, 827–834 (2016). https://doi.org/10.1016/j.scitotenv.2016.01.084

    Article  Google Scholar 

  29. Neale, P.A., Escher, B.I., Leusch, F.D.L.: Understanding the implications of dissolved organic carbon when assessing antagonism in vitro: an example with an estrogen receptor assay. Chemosphere 135, 341–346 (2015). https://doi.org/10.1016/j.chemosphere.2015.04.084

    Article  Google Scholar 

  30. Liu, R., Wilding, A., Hibberd, A., Zhou, J.L.: Partition of endocrine-disrupting chemicals between colloids and dissolved phase as determined by cross-flow ultrafiltration. Environ. Sci. Technol. 39, 2753–2761 (2005). https://doi.org/10.1021/es0484404

    Article  Google Scholar 

  31. Ping, C.Y., Aiken, G., O’Loughlin, E.: Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ. Sci. Technol. 28, 1853–1858 (1994). https://doi.org/10.1021/es00060a015

    Article  Google Scholar 

  32. Jin, X., Hu, J., Ong, S.L.: Influence of dissolved organic matter on estrone removal by NF membranes and the role of their structures. Water Res. 41, 3077–3088 (2007). https://doi.org/10.1016/j.watres.2007.04.025

    Article  Google Scholar 

  33. Yamamoto, H., Liljestrand, H.M., Shimizu, Y., Morita, M.: Effects of physical-chemical characteristics on the sorption of selected endocrine disruptors by dissolved organic matter surrogates. Environ. Sci. Technol. 37, 2646–2657 (2003). https://doi.org/10.1021/es026405w

    Article  Google Scholar 

  34. Goh, J.Y., Goh, K.S., Yip, Y.M., Ng, C.K.: High salinity enhances the adsorption of 17α-ethinyl estradiol by polyethersulfone membrane: isotherm modelling and molecular simulation. Int. J. Environ. Sci. Technol. 19, 5195–5204 (2022). https://doi.org/10.1007/s13762-021-03468-y

    Article  Google Scholar 

  35. Rong, R., Li, Z., Zheng, Y., Zhang, F.: Effect of biochar on 17β-estradiol degradation in composted poultry manure: residue and bioassay analysis. Waste Biomass Valor. 11, 4711–4720 (2020). https://doi.org/10.1007/s12649-019-00788-6

    Article  Google Scholar 

  36. Ye, X., Peng, T., Feng, J., Yang, Q., Pratush, A., Xiong, G., Huang, T., Hu, Z.: A novel dehydrogenase 17β-HSDx from Rhodococcus sp. P14 with potential application in bioremediation of steroids contaminated environment. J. Hazard. Mater. 362, 170–177 (2019). https://doi.org/10.1016/j.jhazmat.2018.09.023

    Article  Google Scholar 

  37. Yu, C.-P., Deeb, R.A., Chu, K.-H.: Microbial degradation of steroidal estrogens. Chemosphere 91, 1225–1235 (2013). https://doi.org/10.1016/j.chemosphere.2013.01.112

    Article  Google Scholar 

  38. Guo, J., Qiu, S., Dai, L., Zhang, L., Meng, L., Liu, M., Yao, H.: The occurrence and removal of steroid estrogens in a full-scale anaerobic/anoxic/aerobic-membrane bioreactor process and the implication of the bacterial community dynamics. J. Environ. Chem. Eng. 10, 107294 (2022). https://doi.org/10.1016/j.jece.2022.107294

    Article  Google Scholar 

  39. Zhang, Y., Snow, D.D., Bartelt-Hunt, S.L.: Stereoselective degradation of estradiol and trenbolone isomers in alluvial sediment. Environ. Sci. Technol. 50, 13256–13264 (2016). https://doi.org/10.1021/acs.est.6b02171

    Article  Google Scholar 

  40. Kumar, V.V., Avisar, D., Prasanna, V.L., Betzalel, Y., Mamane, H.: Rapid visible-light degradation of EE2 and its estrogenicity in hospital wastewater by crystalline promoted g-C3N4. J. Hazard. Mater. 398, 122880–77 (2020). https://doi.org/10.1016/j.jhazmat.2020.122880

    Article  Google Scholar 

  41. Canet-Martí, A., Grüner, S., Lavrnić, S., Toscano, A., Streck, T., Langergraber, G.: Comparison of simple models for total nitrogen removal from agricultural runoff in FWS wetlands. Water Sci. Technol. 85, 3301–3314 (2022). https://doi.org/10.2166/wst.2022.179

    Article  Google Scholar 

  42. Cui, H., Ou, Y., Wang, L., Yan, B., Li, Y., Bao, M.: Critical passivation mechanisms on heavy metals during aerobic composting with different grain-size zeolite. J. Hazard. Mater. 406, 124313 (2021). https://doi.org/10.1016/j.jhazmat.2020.124313

    Article  Google Scholar 

  43. Ma, L., Yates, S.R.: Dissolved organic matter and estrogen interactions regulate estrogen removal in the aqueous environment: a review. Sci. Total Environ. 640–641, 529–542 (2018). https://doi.org/10.1016/j.scitotenv.2018.05.301

    Article  Google Scholar 

  44. Pretorius, L., Smith, C.: Tyramine-induced gastrointestinal dysregulation is attenuated via estradiol associated mechanisms in a zebrafish larval model. Toxicol. Appl. Pharmacol. 461, 116399 (2023). https://doi.org/10.1016/j.taap.2023.116399

    Article  Google Scholar 

  45. Yudt, M.R., Vorojeikina, D., Zhong, L., Skafar, D.F., Sasson, S., Gasiewicz, T.A., Notides, A.C.: Function of estrogen receptor tyrosine 537 in hormone binding, DNA binding, and transactivation. Biochemistry 38, 14146–14156 (1999). https://doi.org/10.1021/bi9911132

    Article  Google Scholar 

  46. Hiroi, R., McDevitt, R.A., Morcos, P.A., Clark, M.S., Neumaier, J.F.: Overexpression or knockdown of rat tryptophan hyroxylase-2 has opposing effects on anxiety behavior in an estrogen-dependent manner. Neuroscience 176, 120–131 (2011). https://doi.org/10.1016/j.neuroscience.2010.12.019

    Article  Google Scholar 

  47. Ren, D., Huang, B., Xiong, D., He, H., Meng, X., Pan, X.: Photodegradation of 17α-ethynylestradiol in dissolved humic substances solution: kinetics, mechanism and estrogenicity variation. J. Environ. Sci. 54, 196–205 (2017). https://doi.org/10.1016/j.jes.2016.03.002

    Article  Google Scholar 

  48. Bedard, M., Giffear, K.A., Ponton, L., Sienerth, K.D., Del Gaizo Moore, V.: Characterization of binding between 17β-estradiol and estriol with humic acid via NMR and biochemical analysis. Biophys. Chem. 189, 1–7 (2014). https://doi.org/10.1016/j.bpc.2014.02.001

    Article  Google Scholar 

  49. Liu, J., Liu, J., Xu, D., Ling, W., Li, S., Chen, M.: Isolation, immobilization, and degradation performance of the 17β-estradiol-degrading bacterium Rhodococcus sp. JX-2. Water Air Soil Pollut. 227, 422 (2016). https://doi.org/10.1007/s11270-016-3122-6

    Article  Google Scholar 

  50. Peng, W., Fu, Y., Jia, B., Sun, X., Wang, Y., Deng, Z., Lin, S., Liang, R.: Metabolism analysis of 17α-ethynylestradiol by Pseudomonas citronellolis SJTE-3 and identification of the functional genes. J. Hazard. Mater. 423, 127045 (2022). https://doi.org/10.1016/j.jhazmat.2021.127045

    Article  Google Scholar 

  51. Budeli, P., Ekwanzala, M.D., Unuofin, J.O., Momba, M.N.B.: Endocrine disruptive estrogens in wastewater: revisiting bacterial degradation and zymoremediation. Environ. Technol. Innov. 21, 101248 (2021). https://doi.org/10.1016/j.eti.2020.101248

    Article  Google Scholar 

  52. Sato, Y., Murakami, T., Funatsuki, H., Matsuba, S., Saruyama, H., Tanida, M.: Heat shock-mediated APX gene expression and protection against chilling injury in rice seedlings. J. Exp. Bot. 52, 145–151 (2001). https://doi.org/10.1093/jexbot/52.354.145

    Article  Google Scholar 

  53. Zheng, J., Hu, M., Zhu, L.: Removal behaviors of aerobic granular sludge on estrogens: adsorption kinetics and removal mechanism. J. Water Process Eng. 44, 102410 (2021). https://doi.org/10.1016/j.jwpe.2021.102410

    Article  Google Scholar 

  54. Tizaoui, C., Fredj, S.B., Monser, L.: Polyamide-6 for the removal and recovery of the estrogenic endocrine disruptors estrone, 17β-estradiol, 17α-ethinylestradiol and the oxidation product 2-hydroxyestradiol in water. Chem. Eng. J. 328, 98–105 (2017). https://doi.org/10.1016/j.cej.2017.07.045

    Article  Google Scholar 

  55. Scott, J.S., Bailey, A., Buttar, D., Carbajo, R.J., Curwen, J., Davey, P.R.J., Davies, R.D.M., Degorce, S.L., Donald, C., Gangl, E., Greenwood, R., Groombridge, S.D., Johnson, T., Lamont, S., Lawson, M., Lister, A., Morrow, C.J., Moss, T.A., Pink, J.H., Polanski, R.: Tricyclic indazoles—a novel class of selective estrogen receptor degrader antagonists. J. Med. Chem. 62, 1593–1608 (2019). https://doi.org/10.1021/acs.jmedchem.8b01837

    Article  Google Scholar 

  56. Sun, R., Song, J., Liu, S.J., Zhao, H., Yan, C.L., Zhang, A.J., Koirala, D., Li, D.W., Hu, C.: Design, synthesis and biological evaluation of 1,4-dihydrothieno[3′,2′:5,6]thiopyrano[4,3-c]pyrazole-3-carboxylic amide derivatives as potential estrogen receptor antagonists. Chin. Chem. Lett. 22, 256–259 (2011). https://doi.org/10.1016/j.cclet.2010.10.029

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by School of Environmental and Engineering, Changzhou University. The authors would like to thank School of Environmental and Engineering, Changzhou University for their effort in laboratory works.

Funding

This research was supported by “Research on key technologies for co-production of organic fertilizers from bio methanol based on biogas and green hydrogen” and “Postgraduate Research and Practice Innovation Program of Jiangsu Province” (grant number BE2022426 and SJCX22_1383).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by BZ, JY. The first draft of the manuscript was written by XL and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Linqiang Mao.

Ethics declarations

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Zhao, B., Yao, J. et al. Degradation Performance of Estrogen During Anaerobic Digestion of Pig Manure. Waste Biomass Valor 15, 2625–2635 (2024). https://doi.org/10.1007/s12649-023-02286-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02286-2

Keywords

Navigation