Skip to main content
Log in

Valorization of Cow Manure: Unraveling Bacterial Community Changes Driven by Vermicomposting and Their Impact on Vermicompost Tea Production

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Vermicomposting is utilized to valorize agricultural residues, including excess manure from dairy farms. The microbiome diversity of vermicompost contributes to its numerous beneficial characteristics. However, it remains unstudied whether teas derived from cow manure vermicompost, even with additives, preserve this microbiome. To respond that, we analyzed the dynamics of bacterial communities in the vermicomposting of precomposted dairy manure, and derived vermicompost teas with and without molasses, using 16S rRNA amplicon sequencing and bioinformatics. Communities of fresh and precomposted manure were dominated by rumen-dwelling and excreta bacteria from the Firmicutes and Bacteroidetes and shared a Bray–Curtis similarity of 71.0% at the genus-level. Precomposting resulted in a decline in the relative abundance of dominant genera, including coliforms. Vermicomposting enhanced diversity and led to a notable shift in the bacterial community composition, as indicated by an 87.0% dissimilarity at the genus-level seen between manure and vermicompost samples. Vermicompost predominantly comprised cellulolytic, nitrogen-fixing, and complex organic compound-degrading bacteria from the Proteobacteria and Bacteroidetes. Production of vermicompost tea did not significantly alter the diversity and bacterial composition of the tea, although pseudomonads and clostridia displayed higher relative abundances. Addition of molasses had a drastic impact, reducing diversity, abundance, and community structure, favoring the proliferation of Acinetobacter and Aeromonas, which collectively accounted for 78.0% of the sequences. In summary, vermicomposting significantly shifted the bacterial community of excreta. The tea retained the diversity and core community of the vermicompost, however, the addition of molasses negatively affected diversity and facilitated the growth of specific gamma-proteobacteria.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data are provided in full in this paper and are available in the Genbank database at https://www.ncbi.nlm.nih.gov/bioproject/PRJNA897901/.

References

  1. Black, Z., Balta, I., Black, L., Naughton, P.J., Dooley, J.S., Corcionivoschi, N.: The fate of foodborne pathogens in manure treated soil. Front. Microbiol. 12, 781357 (2021). https://doi.org/10.3389/fmicb.2021.781357

    Article  Google Scholar 

  2. Lazcano, C., Gómez-Brandón, M., Domínguez, J.: Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere 72(7), 1013–1019 (2008). https://doi.org/10.1016/j.chemosphere.2008.04.016

    Article  Google Scholar 

  3. Pandey, P., Chiu, C., Miao, M., Wang, Y., Settles, M., Del Rio, N.S., et al.: 16S rRNA analysis of diversity of manure microbial community in dairy farm environment. PLoS ONE 13(1), e0190126 (2018). https://doi.org/10.1371/journal.pone.0190126

    Article  Google Scholar 

  4. Virto, M., Santamarina-García, G., Amores, G., Hernández, I.: Antibiotics in dairy production: where is the problem? Dairy 3(3), 541–564 (2022). https://doi.org/10.3390/dairy3030039

    Article  Google Scholar 

  5. Zhang, Z., Shen, J., Wang, H., Liu, M., Wu, L., Ping, F., et al.: Attenuation of veterinary antibiotics in full-scale vermicomposting of swine manure via the housefly larvae (Musca domestica). Sci. Rep. 4, 6844 (2014). https://doi.org/10.1038/srep06844

    Article  Google Scholar 

  6. Gupta, K.K., Aneja, K.R., Rana, D.: Current status of cow dung as a bioresource for sustainable development. Bioresour. Bioprocess. 3(1), 1–11 (2016). https://doi.org/10.1186/s40643-016-0105-9

    Article  Google Scholar 

  7. Zamora, K., Castro, L., Wang, A., Arauz, L.F., Uribe, L.: Uso potencial de lixiviados y tés de vermicompost en el control del ojo de gallo del cafeto Mycena citricolor. Agron. Costarric. 41(1), 33–51 (2017). https://doi.org/10.15517/rac.v41i1.29747

    Article  Google Scholar 

  8. Aira, M., Monroy, F., Domínguez, J.: Microbial biomass governs enzyme activity decay during aging of worm-worked substrates through vermicomposting. J. Environ. Qual. 36(2), 448–452 (2007). https://doi.org/10.2134/jeq2006.0262

    Article  Google Scholar 

  9. Artavia, S., Uribe, L., Saborío, F., Arauz, L.F., Castro, L.: Efecto de la aplicación de abonos orgánicos en la supresión de Pythium myriotylum en plantas de tiquizque (Xanthosoma sagittifolium). Agron. Costarric. 34(1), 17–29 (2010)

    Google Scholar 

  10. Kannangara, T., Forge, T., Dang, B.: Effects of aeration, molasses, kelp, compost type, and carrot juice on the growth of Escherichia coli in compost teas. Compost Sci. Util. 14(1), 40–47 (2006). https://doi.org/10.1080/1065657X.2006.10702261

    Article  Google Scholar 

  11. Mupondi, L.T., Mnkeni, P.N., Muchaonyerwa, P.: Effects of a precomposting step on the vermicomposting of dairy manure-waste paper mixtures. Waste Manag. Res. 29(2), 219–228 (2011). https://doi.org/10.1177/0734242X10363142

    Article  Google Scholar 

  12. Nair, J., Sekiozoic, V., Anda, M.: Effect of precomposting on vermicomposting of kitchen waste. Bioresour. Technol. 97(16), 2091–2095 (2006). https://doi.org/10.1016/j.biortech.2005.09.020

    Article  Google Scholar 

  13. Gómez-Brandón, M., Aira, M., Lores, M., Domínguez, J.: Epigeic earthworms exert a bottleneck effect on microbial communities through gut associated processes. PLoS ONE 6(9), e24786 (2011). https://doi.org/10.1371/journal.pone.0024786

    Article  Google Scholar 

  14. Kiyasudeen, S.K., Ibrahim, M.H., Quaik, S., Ismail, A.: Vermicompost, its applications and derivatives. In: Jegatheesan, V.J., Shu, L., Lens, P., Chiemchaisri, C. (eds.) Prospects of Organic Waste Management and the Significance of Earthworms, pp. 201–230. Springer Cham, New York (2016). https://doi.org/10.1007/978-3-319-24708-3_9

    Chapter  Google Scholar 

  15. Versteegh, E.A.A., Black, S., Hodson, M.E.: Carbon isotope fractionation between amorphous calcium carbonate and calcite in earthworm-produced calcium carbonate. Appl. Geochem. 78, 351–356 (2017). https://doi.org/10.1016/j.apgeochem.2017.01.017

    Article  Google Scholar 

  16. Pathma, J., Sakthivel, N.: Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. Springerplus 1(1), 1–19 (2012). https://doi.org/10.1186/2193-1801-1-26

    Article  Google Scholar 

  17. Eastman, B.R., Kane, P.N., Edwards, C.A., Trytek, L., Gunadi, B., Stermer, A.L., Mobley, J.R.: The effectiveness of vermiculture in human pathogen reduction for USEPA biosolids stabilization. Compost Sci. Util. 9, 38–49 (2001). https://doi.org/10.1080/1065657X.2001.10702015

    Article  Google Scholar 

  18. Hu, J., Zhao, H., Wang, Y., Yin, Z., Kang, Y.: The bacterial community structures in response to the gut passage of earthworm (Eisenia fetida) feeding on cow dung and domestic sludge: illumina high-throughput sequencing-based data analysis. Ecotoxicol. Environ. Saf. 190, 110149 (2020). https://doi.org/10.1016/j.ecoenv.2019.110149

    Article  Google Scholar 

  19. Swati, A., Hait, S.: A comprehensive review of the fate of pathogens during vermicomposting of organic wastes. J. Environ. Qual. 47(1), 16–29 (2018). https://doi.org/10.2134/jeq2017.07.0265

    Article  Google Scholar 

  20. Uribe, L., Arauz, L.F., Mata, M., Meneses, G., Castro, L.: Efecto del vermicompostaje sobre las poblaciones de Colletotrichum acutatum y Pectobacterium carotovorum presentes en residuos de plantas. Agron. Costarric. 33(1), 91–101 (2009)

    Google Scholar 

  21. Aira, M., Bybee, S., Pérez-Losada, M., Domínguez, J.: Feeding on microbiomes: effects of detritivory on the taxonomic and phylogenetic bacterial composition of animal manures. FEMS Microbiol. Ecol. (2015). https://doi.org/10.1093/femsec/fiv117

    Article  Google Scholar 

  22. Zhang, B.G., Li, G.T., Shen, T.S., Wang, J.K., Sun, Z.: Changes in microbial biomass C, N, and P and enzyme activities in soil incubated with the earthworms Metaphire guillelmi or Eisenia fetida. Soil Biol. Biochem. 32(14), 2055–2062 (2000). https://doi.org/10.1016/S0038-0717(00)00111-5

    Article  Google Scholar 

  23. Soobhany, N., Mohee, R., Garg, V.K.: Inactivation of bacterial pathogenic load in compost against vermicompost of organic solid waste aiming to achieve sanitation goals: a review. Waste Manag. 64, 51–62 (2017). https://doi.org/10.1016/j.wasman.2017.03.003

    Article  Google Scholar 

  24. Arancon, N.Q., Edwards, C.A., Dick, R., Dick, L.: Vermicompost tea production and plant growth impacts. Biocycle 48(11), 51 (2007). https://www.biocycle.net/vermicompost-tea-production-and-plant-growth-impacts/. Accessed June 2022

  25. Al-Mughrabi, K.I., Bertheleme, C., Livingston, T., Burgoyne, A., Poirier, R., Vikram, A.: Aerobic compost tea, compost and a combination of both reduce the severity of common Scab (Streptomyces scabiei) on Potato tubers. J. Plant Sci. 3(2), 168–175 (2008). https://doi.org/10.3923/jps.2008.168.175

    Article  Google Scholar 

  26. Castello, P., Celano, G., Zaccardelli, M.: Metabolic patterns of bacterial communities in aerobic compost teas associated with potential biocontrol of soilborne plant diseases. Phytopathol. Mediterr. 53(2), 277–286 (2014). https://doi.org/10.14601/Phytopathol_Mediterr-13363

    Article  Google Scholar 

  27. Fritz, J.I., Franke-Whittle, I.H., Haindl, S., Insam, H., Braun, R.: Microbiological community analysis of vermicompost tea and its influence on the growth of vegetables and cereals. Can. J. Microbiol. 58(7), 836–847 (2012). https://doi.org/10.1139/w2012-061

    Article  Google Scholar 

  28. Yatoo, A.M., Ali, M., Baba, Z.A., Hassan, B.: Sustainable management of diseases and pests in crops by vermicompost and vermicompost tea. A review. Agron. For. Sustain Dev. 41(1), 1–26 (2021). https://doi.org/10.1007/s13593-020-00657-w

    Article  Google Scholar 

  29. Arancon, N.Q., Owens, J.D., Converse, C.: The effects of vermicompost tea on the growth and yield of lettuce and tomato in a non-circulating hydroponics system. J. Plant Nutr. 42(19), 2447–2458 (2019). https://doi.org/10.1080/01904167.2019.1655049

    Article  Google Scholar 

  30. Scheuerell, S.J., Mahaffee, W.: Compost tea: principles and prospects for plant disease control. Compost Sci. Util. 10(4), 313–338 (2002). https://doi.org/10.1080/1065657X.2002.10702095

    Article  Google Scholar 

  31. Pant, A., Radovich, T.J.K., Hue, N.V., Paull, R.E.: Biochemical properties of compost tea associated with compost quality and effects on pak choi growth. Sci. Hortic. 148, 138–146 (2012). https://doi.org/10.1016/j.scienta.2012.09.019

    Article  Google Scholar 

  32. Ingham, E.: The Compost Tea Brewing Manual. Soil Foodweb, Oregon (2005)

    Google Scholar 

  33. Khattiyaphutthimet, N., Chuasavathi, T., Iwai, C.B.: Nutrient dynamic of vermicompost tea after adding molasses and oxygen. Int. J. Environ. Rural Dev. 10(1), 6–9 (2019)

    Google Scholar 

  34. Duffy, B., Sarreal, C., Ravva, S., Stanker, L.: Effect of molasses on regrowth of E. coli O157: H7 and Salmonella in compost teas. Compost Sci. Util. 12(1), 93–96 (2004). https://doi.org/10.1080/1065657X.2004.10702163

    Article  Google Scholar 

  35. NOSB. National Organic Standards Board: use of compost, vermicompost, processed manure and compost tea (2012). https://www.ams.usda.gov/sites/default/files/media/NOP%20Final%20Rec%20Guidance%20use%20of%20Compost.pdf. Accessed Apr 2022

  36. Ingram, D.T., Millner, P.D.: Factors affecting compost tea as a potential source of Escherichia coli and Salmonella on fresh produce. J. Food Prot. 70(4), 828–834 (2007). https://doi.org/10.4315/0362-028x-70.4.828

    Article  Google Scholar 

  37. Huang, K., Li, F., Wei, Y., Chen, X., Fu, X.: Changes of bacterial and fungal community compositions during vermicomposting of vegetable wastes by Eisenia foetida. Bioresour. Technol. 150, 235–241 (2013). https://doi.org/10.1016/j.biortech.2013.10.006

    Article  Google Scholar 

  38. Li, Q., Wang, X.C., Zhang, H.H., Shi, H.L., Hu, T., Ngo, H.H.: Characteristics of nitrogen transformation and microbial community in an aerobic composting reactor under two typical temperatures. Bioresour. Technol. 137, 270–277 (2013). https://doi.org/10.1016/j.biortech.2013.03.092

    Article  Google Scholar 

  39. Partanen, P., Hultman, J., Paulin, L., Auvinen, P., Romantschuk, M.: Bacterial diversity at different stages of the composting process. BMC Microbiol. 10, 94 (2010). https://doi.org/10.1186/1471-2180-10-94

    Article  Google Scholar 

  40. Szekely, A.J., Sipos, R., Berta, B., Vajna, B., Hajdu, C., Marialigeti, K.: DGGE and T-RFLP analysis of bacterial succession during mushroom compost production and sequence-aided T-RFLP profile of mature compost. Microb. Ecol. 57(3), 522–533 (2009). https://doi.org/10.1007/s00248-008-9424-5

    Article  Google Scholar 

  41. Vivas, A., Moreno, B., Garcia-Rodriguez, S., Benitez, E.: Assessing the impact of composting and vermicomposting on bacterial community size and structure, and microbial functional diversity of an olive-mill waste. Bioresour. Technol. 100(3), 1319–1326 (2009). https://doi.org/10.1016/j.biortech.2008.08.014

    Article  Google Scholar 

  42. Fernández-Gómez, M.J., Nogales, R., Insam, H., Romero, E., Goberna, M.: Continuous-feeding vermicomposting as a recycling management method to revalue tomato-fruit wastes from greenhouse crops. Waste Manag. 30(12), 2461–2468 (2010). https://doi.org/10.1016/j.wasman.2010.07.005

    Article  Google Scholar 

  43. St. Martin, C.C., Rouse-Miller, J., Barry, G.T., Vilpigue, P.: Compost and compost tea microbiology: the “-omics” era. In: Meghvansi, M.K., Varma, A. (eds.) Biology of Composts, pp. 3–30. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-39173-7_1

    Chapter  Google Scholar 

  44. Cai, L., Gong, X., Sun, X., Li, S., Yu, X.: Comparison of chemical and microbiological changes during the aerobic composting and vermicomposting of green waste. PLoS ONE 13(11), e0207494 (2018). https://doi.org/10.1371/journal.pone.0207494

    Article  Google Scholar 

  45. Domínguez, J., Aira, M., Crandall, K.A., Pérez-Losada, M.: Earthworms drastically change fungal and bacterial communities during vermicomposting of sewage sludge. Sci. Rep. 11(1), 1–10 (2021). https://doi.org/10.1038/s41598-021-95099-z

    Article  Google Scholar 

  46. Gómez-Brandón, M., Aira, M., Domínguez, J.: Vermicomposts are biologically different: microbial and functional diversity of green vermicomposts. In: Bhat, S.A., et al. (eds.) Earthworm Assisted Remediation of Effluents and Wastes, pp. 150–170. Springer Nature, Singapore (2020). https://doi.org/10.1007/978-981-15-4522-1_8

    Chapter  Google Scholar 

  47. Lv, B., Xing, M., Yang, J.: Exploring the effects of earthworms on bacterial profiles during vermicomposting process of sewage sludge and cattle dung with high-throughput sequencing. Environ. Sci. Pollut. Res. 25, 1–10 (2018). https://doi.org/10.1007/s11356-018-1520-6

    Article  Google Scholar 

  48. Durán, L., Henríquez, C.: Crecimiento y reproducción de la lombriz roja (Eisenia fetida) en cinco sustratos orgánicos. Agron. Costarric. 33(2), 275–281 (2009)

    Google Scholar 

  49. Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., et al.: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37(8), 852–857 (2019). https://doi.org/10.1038/s41587-019-0209-9

    Article  Google Scholar 

  50. Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P.: DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016). https://doi.org/10.1038/nmeth.3869

    Article  Google Scholar 

  51. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Glöckner, F.O.: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl. Acids Res. 41(D1), D590–D596 (2012). https://doi.org/10.1093/nar/gks1219

    Article  Google Scholar 

  52. Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., Chun, J.: Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617 (2017). https://doi.org/10.1099/ijsem.0.001755

    Article  Google Scholar 

  53. Chun, J., Kim, K.Y., Lee, J.H., Choi, Y.: The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX Titanium pyrosequencer. BMC Microbiol. 10(1), 1–8 (2010). https://doi.org/10.1186/1471-2180-10-101

    Article  Google Scholar 

  54. Clarke, K.R., Gorley, R.N.: PRIMER v7: User Manual/Tutorial. PRIMER-E, Plymouth (2015)

    Google Scholar 

  55. Somerfield, P.J., Clarke, K.R.: Inverse analysis in non-parametric multivariate analyses: distinguishing groups of associated species which covary coherently across samples. J. Exp. Mar. Biol. Ecol. 449, 261–273 (2013). https://doi.org/10.1016/j.jembe.2013.10.002

    Article  Google Scholar 

  56. Liu, D., Lian, B., Wang, B., Jiang, G.: Degradation of potassium rock by earthworms and responses of bacterial communities in its gut and surrounding substrates after being fed with mineral. PLoS ONE 6(12), e28803 (2011). https://doi.org/10.1371/journal.pone.0028803

    Article  Google Scholar 

  57. Perez-Perez, J.A., Espinosa-Victoria, D., Silva-Rojas, H.V., Lopez-Reyes, L.: Diversidad de la microbiota bacteriana cultivable del tracto digestivo de Eisenia fetida. Rev. Fitotec. Mex. 41(3), 255–264 (2018). https://doi.org/10.35196/rfm.2018.3.255-264

    Article  Google Scholar 

  58. Huang, S., Ji, S., Wang, F., Huang, J., Alugongo, G.M., Li, S.: Dynamic changes of the fecal bacterial community in dairy cows during early lactation. AMB Express 10(1), 1–9 (2020). https://doi.org/10.1186/s13568-020-01106-3

    Article  Google Scholar 

  59. Ozbayram, E.G., Ince, O., Ince, B., Harms, H., Kleinsteuber, S.: Comparison of rumen and manure microbiomes and implications for the inoculation of anaerobic digesters. Microorganisms 6(1), 15 (2018). https://doi.org/10.3390/microorganisms6010015

    Article  Google Scholar 

  60. Shanks, O.C., Kelty, C.A., Archibeque, S., Jenkins, M., Newton, R.J., McLellan, S.L., et al.: Community structures of fecal bacteria in cattle from different animal feeding operations. Appl. Environ. Microbiol. 77(9), 2992–3001 (2011). https://doi.org/10.1128/AEM.02988-10

    Article  Google Scholar 

  61. Sun, L., Pope, P.B., Eijsink, V.G., Schnürer, A.: Characterization of microbial community structure during continuous anaerobic digestion of straw and cow manure. Microb. Biotechnol. 8(5), 815–827 (2015). https://doi.org/10.1111/1751-7915.12298

    Article  Google Scholar 

  62. Wong, K., Shaw, T.I., Oladeinde, A., Glenn, T.C., Oakley, B., Molina, M.: Rapid microbiome changes in freshly deposited cow feces under field conditions. Front. Microbiol. 7, 500 (2016). https://doi.org/10.3389/fmicb.2016.00500

    Article  Google Scholar 

  63. Girija, D., Deepa, K., Xavier, F., Antony, I., Shidhi, P.R.: Analysis of cow dung microbiota a metagenomic approach. Indian J. Biotechnol. 12, 372–378 (2013)

    Google Scholar 

  64. Hagey, J.V., Bhatnagar, S., Heguy, J.M., Karle, B.M., Price, P.L., Meyer, D., Maga, E.A.: Fecal microbial communities in a large representative cohort of California dairy cows. Front. Microbiol. 10, 1093 (2019). https://doi.org/10.3389/fmicb.2019.01093

    Article  Google Scholar 

  65. Kong, Y., Teather, R., Forster, R.: Composition, spatial distribution, and diversity of the bacterial communities in the rumen of cows fed different forages. FEMS Microbiol. Ecol. 74(3), 612–622 (2010). https://doi.org/10.1111/j.1574-6941.2010.00977.x

    Article  Google Scholar 

  66. Kong, L.C., Wang, B., Wang, Y.M., Hu, R.G., Atiewin, A., Gao, D., et al.: Characterization of bacterial community changes and antibiotic resistance genes in lamb manure of different incidence. Sci. Rep. 9(1), 1–7 (2019). https://doi.org/10.1038/s41598-019-46604-y

    Article  Google Scholar 

  67. Mutungwazi, A., Ijoma, G.N., Ogola, H.J., Matambo, T.S.: Physico-chemical and metagenomic profile analyses of animal manures routinely used as inocula in anaerobic digestion for biogas production. Microorganisms 10(4), 671 (2021). https://doi.org/10.3390/microorganisms10040671

  68. Nagao-Kitamoto, H., Kitamoto, S., Kuffa, P., Kamada, N.: Pathogenic role of the gut microbiota in gastrointestinal diseases. Intest Res 14(2), 127 (2016). https://doi.org/10.5217/ir.2016.14.2.127

    Article  Google Scholar 

  69. Ishiguro, E., Haskey, N., Campbell, K.: Gut microbiota throughout the lifespan. In: Ishiguro, E., Haskey, N., Campbell, K. (eds.) Gut Microbiota, pp. 41–55. Academic Press, Cambridge (2018). https://doi.org/10.1016/B978-0-12-810541-2.00003-8

    Chapter  Google Scholar 

  70. Durso, L.M., Harhay, G.P., Smith, T.P., Bono, J.L., DeSantis, T.Z., Harhay, D.M., et al.: Animal-to-animal variation in fecal microbial diversity among beef cattle. Appl. Environ. Microbiol. 76(14), 4858–4862 (2010). https://doi.org/10.1128/AEM.00207-10

    Article  Google Scholar 

  71. Bach, A., López-García, A., González-Recio, O., Elcoso, G., Fàbregas, F., Chaucheyras-Durand, F., Castex, M.: Changes in the rumen and colon microbiota and effects of live yeast dietary supplementation during the transition from the dry period to lactation of dairy cows. J. Dairy Sci. 102(7), 6180–6198 (2019). https://doi.org/10.3168/jds.2018-16105

    Article  Google Scholar 

  72. Bryant, M.P.: Succinivibrio. In: Whitman, W.B. (ed.) Bergey’s Manual of Systematics of Archaea and Bacteria, pp. 581–586. Wiley, New York (2015). https://doi.org/10.1002/9781118960608.gbm01087

    Chapter  Google Scholar 

  73. Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., Stackebrandt, E.: The Prokaryotes: Volume 5: Proteobacteria: Alpha and Beta Subclasses. Springer, New York (2006). https://doi.org/10.1007/0-387-30744-3

    Book  Google Scholar 

  74. Könönen, E., Song, Y., Rautio, M., Finegold, S.M.: Alistipes. In: Whitman, W.B. (ed.) Bergey’s Manual of Systematics of Archaea and Bacteria, pp. 1–7. Wiley, New York (2015). https://doi.org/10.1007/978-0-387-68572-4

    Chapter  Google Scholar 

  75. Mukherjee, A., Lordan, C., Ross, R.P., Cotter, P.D.: Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health. Gut Microbes 12(1), 1802866 (2020). https://doi.org/10.1080/19490976.2020.1802866

    Article  Google Scholar 

  76. Bell, J.: Identifying infection reservoirs of digital dermatitis in dairy cattle. The University of Liverpool (United Kingdom) (2017). https://doi.org/10.17638/03020193

  77. Ijoma, G.N., Nkuna, R., Mutungwazi, A., Rashama, C., Matambo, T.S.: Applying PICRUSt and 16S rRNA functional characterisation to predicting co-digestion strategies of various animal manures for biogas production. Sci. Rep. 11(1), 1–13 (2021). https://doi.org/10.1038/s41598-021-99389-4

    Article  Google Scholar 

  78. Verbarg, S., Göker, M., Scheuner, C., Schumann, P., Stackebrandt, E.: The families Erysipelotrichaceae emend., Coprobacillaceae fam. Nov., and Turicibacteraceae fam. Nov. In: DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds.) The Prokaryotes: Firmicutes and Tenericutes, pp. 79–105. Springer, Berlin (2014). https://doi.org/10.1007/978-3-642-30120-9_205

    Chapter  Google Scholar 

  79. Manyi-Loh, C., Mamphweli, S., Meyer, E., Okoh, A.: Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules 23(4), 795 (2018). https://doi.org/10.3390/molecules23040795

    Article  Google Scholar 

  80. Bollo, E.: Lombricultura: una alternativa de reciclaje. Soboc Grafic, Quito (1999)

    Google Scholar 

  81. Moreno-Caselles, J., Moral, R., Perez-Murcia, R., Perez-Espinosa, A., Rufete, B.: Nutrient value of animal manures in front of environmental hazards. Commun. Soil Sci. Plant Anal. 33(15–18), 3023–3032 (2002). https://doi.org/10.1081/CSS-120014499

    Article  Google Scholar 

  82. Sodaei, M.S., Aliasgharzadeh, N., Oustan, S.H.: Mineralization kinetic of nitrogen in an attended soil by compost, vermicompost and animal manure. J. Agric. Nat. Resour. 11, 405–414 (2007)

    Google Scholar 

  83. Diánez, F., Marín, F., Santos, M., Gea, F.J., Navarro, M.J., Piñeiro, M., González, J.M.: Genetic analysis and in vitro enzymatic determination of bacterial community in compost teas from different sources. Compost Sci. Util. 26(4), 256–270 (2018). https://doi.org/10.1080/1065657X.2018.1496045

    Article  Google Scholar 

  84. Mengesha, W.K., Powell, S.M., Evans, K.J., Barry, K.M.: Diverse microbial communities in non-aerated compost teas suppress bacterial wilt. World J. Microbiol. Biotechnol. 33(3), 1–14 (2017). https://doi.org/10.1007/s11274-017-2212-y

    Article  Google Scholar 

  85. Vijayabharathi, R., Sathya, A., Gopalakrishnan, S.: Plant growth-promoting microbes from herbal vermicompost. In: Egamberdieva, D., Shrivastava, S., Varma, A. (eds.) Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants, pp. 71–88. Springer Cham, New York (2015). https://doi.org/10.1007/978-3-319-13401-7

    Chapter  Google Scholar 

  86. You, X., Kimura, N., Okura, T., Murakami, S., Okano, R., Shimogami, Y., Matsumura, A., Tokumoto, H., Ogata, Y., Tojo, M.: Suppressive effects of vermicomposted-bamboo powder on cucumber damping-off. Jpn. Agric. Res. Q. 53, 13–19 (2019). https://doi.org/10.6090/jarq.53.13

    Article  Google Scholar 

  87. Rappé, M.S., Giovannoni, S.J.: The uncultured microbial majority. Annu. Rev. Microbiol. 57(1), 369–394 (2003). https://doi.org/10.1146/annurev.micro.57.030502.090759

    Article  Google Scholar 

  88. Aira, M., Olcina, J., Pérez-Losada, M., Domínguez, J.: Characterization of the bacterial communities of casts from Eisenia andrei fed with different substrates. Appl. Soil. Ecol. 98, 103–111 (2016). https://doi.org/10.1016/j.apsoil.2015.10.002

    Article  Google Scholar 

  89. Yasir, M., Aslam, Z., Kim, S.W., Lee, S.W., Jeon, C.O., Chung, Y.R.: Bacterial community composition and chitinase gene diversity of vermicompost with antifungal activity. Bioresour. Technol. 100(19), 4396–4403 (2009). https://doi.org/10.1016/j.biortech.2009.04.015

    Article  Google Scholar 

  90. Castillo, J.M., Romero, E., Nogales, R.: Dynamics of microbial communities related to biochemical parameters during vermicomposting and maturation of agroindustrial lignocellulose wastes. Bioresour. Technol. 146, 345–354 (2013). https://doi.org/10.1016/j.biortech.2013.07.093

    Article  Google Scholar 

  91. Hoffmann, K., Bienhold, C., Buttigieg, P.L., Knittel, K., Laso-Perez, R., Rapp, J.Z., Boetius, A., Offre, P.: Diversity and metabolism of Woeseiales bacteria, global members of marine sediment communities. ISME J. 14, 1042–1056 (2020). https://doi.org/10.1038/s41396-020-0588-4

    Article  Google Scholar 

  92. Bernard, L., Chapuis-Lardy, L., Razafimbelo, T., Razafindrakoto, M., Pablo, A.L., Legname, E., et al.: Endogeic earthworms shape bacterial functional communities and affect organic matter mineralization in a tropical soil. ISME J. 6(1), 213–222 (2012). https://doi.org/10.1038/ismej.2011.87

    Article  Google Scholar 

  93. Zhang, H., Li, J., Zhang, Y., Huang, K.: Quality of vermicompost and microbial community diversity affected by the contrasting temperature during vermicomposting of dewatered sludge. Int. J. Environ. Res. Public Health 17(5), 1748 (2020). https://doi.org/10.3390/ijerph17051748

    Article  Google Scholar 

  94. Kindaichi, T., Yamaoka, S., Uehara, R., Ozaki, N., Ohashi, A., Albertsen, M., et al.: Phylogenetic diversity and ecophysiology of Candidate phylum Saccharibacteria in activated sludge. FEMS Microbiol. Ecol. (2016). https://doi.org/10.1093/femsec/fiw078

    Article  Google Scholar 

  95. Prakash, M., Hemalatha, N.: Dynamics of microorganisms during vermi-stabilization of organic substrates and enhances performance of plant growth promoting rhizobacteria on black gram. Int. J. Curr. Microbiol. Appl. Sci. 2, 171–187 (2013)

    Google Scholar 

  96. Wiegel, J., Tanner, R., Rainey, F.A.: An introduction to the family Clostridiaceae. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., Stackebrandt, E. (eds.) The Prokaryotes, pp. 654–678. Springer, New York (2006). https://doi.org/10.1007/0-387-30744-3_20

    Chapter  Google Scholar 

  97. Figueiredo, G., Lopes, V.R., Romano, T., Camara, M.C.: Clostridium. In: Amaresan, N., Kumar, M.S., Annapurna, K., Kumar, K., Sankaranaryanan, N. (eds.) Beneficial Microbes in Agro-Ecology, pp. 477–491. Academic Press, Cambridge (2020). https://doi.org/10.1016/B978-0-12-823414-3.00022-8

    Chapter  Google Scholar 

  98. Gerritsen, J., Hornung, B., Ritari, J., Paulin, L., Rijkers, G.T., Schaap, P.J., et al.: A comparative and functional genomics analysis of the genus Romboutsia provides insight into adaptation to an intestinal lifestyle. BioRxiv (2019). https://doi.org/10.1101/845511

    Article  Google Scholar 

  99. Yausheva, E., Sizova, E., Lebedev, S., Skalny, A., Miroshnikov, S., Plotnikov, A., et al.: Influence of zinc nanoparticles on survival of worms Eisenia fetida and taxonomic diversity of the gut microflora. Environ. Sci. Pollut. Res. 23(13), 13245–13254 (2016). https://doi.org/10.1007/s11356-016-6474-y

    Article  Google Scholar 

  100. Kimura, N., Watanabe, T., Suenaga, H., Fujihara, H., Futagami, T., Goto, M., et al.: Pseudomonas furukawaii sp. nov., a polychlorinated biphenyl-degrading bacterium isolated from biphenyl-contaminated soil in Japan. Int. J. Syst. Evol. Microbiol. 68(5), 1429–1435 (2018). https://doi.org/10.1099/ijsem.0.002670

    Article  Google Scholar 

  101. Welke, S.E.: The effect of compost extract on the yield of strawberries and the severity of Botrytis cinerea. J. Sustain. Agric. 25(1), 57–68 (2005). https://doi.org/10.1300/J064v25n01_06

    Article  Google Scholar 

  102. Kim, M.J., Shim, C.K., Kim, Y.K., Hong, S.J., Park, J.H., Han, E.J., et al.: Effect of aerated compost tea on the growth promotion of lettuce, soybean, and sweet corn in organic cultivation. Plant Pathol. J. 31(3), 259–268 (2015). https://doi.org/10.5423/PPJ.OA.02.2015.0024

    Article  Google Scholar 

  103. Scheuerell, S.J., Mahaffee, W.: Variability associated with suppression of gray mold (Botrytis cinerea) on geranium by foliar applications of nonaerated and aerated compost teas. Plant Dis. 90, 1201–1208 (2006). https://doi.org/10.1094/pd-90-1201

    Article  Google Scholar 

  104. Madigan, M.T., Bender, K.S., Buckley, D.H., Sattley, W.M., Stahl, D.A.: Brock Biology of Microorganisms. Pearson, New York (2018)

    Google Scholar 

  105. He, W.H., Wang, Y.N., Du, X., Zhou, Y., Jia, B., Bian, J., et al.: Pseudomonas linyingensis sp. nov.: a novel bacterium isolated from wheat soil subjected to long-term herbicides application. Curr. Microbiol. 65(5), 595–600 (2012). https://doi.org/10.1007/s00284-012-0187-3

    Article  Google Scholar 

  106. Vodovar, N., Vallenet, D., Cruveiller, S., Rouy, Z., Barbe, V., Acosta, C., et al.: Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat. Biotechnol. 24(6), 673–679 (2006). https://doi.org/10.1038/nbt1212

    Article  Google Scholar 

  107. Gulati, A., Sharma, N., Vyas, P., Sood, S., Rahi, P., Pathania, V., Prasad, R.: Organic acid production and plant growth promotion as a function of phosphate solubilization by Acinetobacter rhizospheres strain BIHB 723 isolated from the cold deserts of the trans-Himalayas. Arch. Microbiol. 192, 975–983 (2010). https://doi.org/10.1007/s00203-010-0615-3

    Article  Google Scholar 

  108. Karthika, A., Seenivasagan, R., Kasimani, R., Babalola, O.O., Vasanthy, M.: Cellulolytic bacteria isolation, screening and optimization of enzyme production from vermicompost of paper cup waste. Waste Manag. 116, 58–65 (2020). https://doi.org/10.1016/j.wasman.2020.06.036

    Article  Google Scholar 

  109. Pathma, J., Sakthivel, N.: Molecular and functional characterization of bacteria isolated from straw and goat manure based vermicompost. Appl. Soil. Ecol. 70, 33–47 (2013). https://doi.org/10.1016/j.apsoil.2013.03.011

    Article  Google Scholar 

  110. Uribe-Lorío, L., WingChing-Jones, R., Vidaurre-Barahona, D., Uribe, L., Aráuz, L.F.: Bacterias cultivables resistentes a oxitetraciclina durante el proceso de vermicompostaje de excretas bovinas. UNED Res. J. 15(1), e4586 (2023). https://doi.org/10.22458/urj.v15i1.4586

    Article  Google Scholar 

  111. Janda, J.M., Abbott, S.L.: The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin. Microbiol. Rev. 23, 35–73 (2010). https://doi.org/10.1128/CMR.00039-09

    Article  Google Scholar 

  112. Grilo, M.L., Sousa-Santos, C., Robalo, J., Oliveira, M.: The potential of Aeromonas spp. from wildlife as antimicrobial resistance indicators in aquatic environments. Ecol. Indic. 115, 106396 (2020). https://doi.org/10.1016/j.ecolind.2020.106396

    Article  Google Scholar 

  113. Blomström, A.L., Lalander, C., Komakech, A.J., Vinnerås, B., Boqvist, S.: A metagenomic analysis displays the diverse microbial community of a vermicomposting system in Uganda. Infect. Ecol. Epidemiol. 6(1), 32453 (2016). https://doi.org/10.3402/iee.v6.32453

    Article  Google Scholar 

  114. Furlong, M.A., Singleton, D.R., Coleman, D.C., Whitman, W.B.: Molecular and culture-based analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus. Appl. Environ. Microbiol. 68, 1265–1279 (2002). https://doi.org/10.1128/AEM.68.3.1265-1279.2002

    Article  Google Scholar 

  115. Wüst, P.K., Horn, M.A., Drake, H.L.: Clostridiaceae and Enterobacteriaceae as active fermenters in earthworm gut content. ISME J. 5(1), 92–106 (2011). https://doi.org/10.1038/ismej.2010.99

    Article  Google Scholar 

  116. Toyota, K., Kimura, M.: Microbial community indigenous to the earthworm Eisenia foetida. Biol. Fertil. Soils 31(3), 187–190 (2000). https://doi.org/10.1007/s003740050644

    Article  Google Scholar 

  117. Figueira, V., Vaz-Moreira, I., Silva, M., Manaia, C.M.: Diversity and antibiotic resistance of Aeromonas spp. in drinking and wastewater treatment plants. Water Res. 45(17), 5599–5611 (2011). https://doi.org/10.1016/j.watres.2011.08.021

    Article  Google Scholar 

  118. Tacão, M., Correia, A., Henriques, I.: Resistance to broad-spectrum antibiotics in aquatic systems: anthropogenic activities modulate the dissemination of bla CTX-M-like genes. Appl. Environ. Microbiol. 78(12), 4134–4140 (2012). https://doi.org/10.1128/AEM.00359-12

    Article  Google Scholar 

Download references

Funding

This work was supported by Vicerrectoría de Investigación, Universidad de Costa Rica (VI-733-A1-821) and Sistema de Estudios de Posgrado, Universidad de Costa Rica (FR-082).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: LFA, LUL, LU; Methodology: LUL, RWJ, LU; Formal analysis and investigation: LUL, LBG; Writing—original draft preparation: LUL; Writing—review and editing: LUL, LFA, LU, RWJ, LBG, CR, FG, Funding acquisition: LU, LUL; Resources: RWJ, LU, LUL; Supervision: CR, FG, LFA.

Corresponding author

Correspondence to Lorena Uribe-Lorío.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uribe-Lorío, L., Brenes-Guillén, L., WingChing-Jones, R. et al. Valorization of Cow Manure: Unraveling Bacterial Community Changes Driven by Vermicomposting and Their Impact on Vermicompost Tea Production. Waste Biomass Valor 15, 2175–2190 (2024). https://doi.org/10.1007/s12649-023-02276-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02276-4

Keywords

Navigation