Abstract
Fluorinated octyl silane-modified cellulose nanofibers (FOTS-CNF) were successfully prepared from 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized CNFs (TOCNFs) derived from agricultural waste hop stems. The surface structures of the FOTS-modified CNFs were site-specifically investigated by 13C/19F/29Si solid-state nuclear magnetic resonance and Fourier-transform infrared spectroscopy. The spectroscopic results indicated that siloxane layers with fluorinated octyl chains extensively covered on the hydrophilic surface of the TOCNFs. This hydrophobic surface coating exhibited the highest water contact angle of 126.9°.
Graphical Abstract

This is a preview of subscription content, access via your institution.









Data Availability
Enquiries about data availability should be directed to the authors.
References
Jonoobi, M., Oladi, R., Davoudpour, Y., Oksman, K., Dufresne, A., Hamzeh, Y., Davoodi, R.: Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22, 935–969 (2015). https://doi.org/10.1007/S10570-015-0551-0
Isogai, A., Saito, T., Fukuzumi, H.: TEMPO-oxidized cellulose nanofibers. Nanoscale 3, 71–85 (2011). https://doi.org/10.1039/c0nr00583e
Jiménez Saelices, C., Capron, I.: Design of Pickering micro- and nanoemulsions based on the structural characteristics of nanocelluloses. Biomacromolecules 19, 460–469 (2018). https://doi.org/10.1021/acs.biomac.7b01564
Lu, Y., Han, J., Ding, Q., Yue, Y., Xia, C., Ge, S., Le, Q.V., Dou, X., Sonne, C., Lam, S.S.: TEMPO-oxidized cellulose nanofibers/polyacrylamide hybrid hydrogel with intrinsic self-recovery and shape memory properties. Cellulose 28, 1469–1488 (2021). https://doi.org/10.1007/s10570-020-03606-8
Abdelmouleh, M., Boufi, S., Belgacem, M.N., Duarte, A.P., Ben Salah, A., Gandini, A.: Modification of cellulosic fibres with functionalised silanes: development of surface properties. Int. J. Adhes. Adhes. 24, 43–54 (2004). https://doi.org/10.1016/S0143-7496(03)00099-X
Robles, E., Fernández-RodrÃguez, J., Barbosa, A.M., Gordobil, O., Carreño, N.L.V., Labidi, J.: Production of cellulose nanoparticles from blue agave waste treated with environmentally friendly processes. Carbohydr. Polym. 183, 294–302 (2018). https://doi.org/10.1016/j.carbpol.2018.01.015
Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J.: Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994 (2011). https://doi.org/10.1039/c0cs00108b
Jonoobi, M., Harun, J., Mathew, A.P., Hussein, M.Z.B., Oksman, K.: Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17, 299–307 (2010). https://doi.org/10.1007/s10570-009-9387-9
Reshmy, R., Philip, E., Madhavan, A., Pugazhendhi, A., Sindhu, R., Sirohi, R., Awasthi, M.K., Pandey, A., Binod, P.: Nanocellulose as green material for remediation of hazardous heavy metal contaminants. J. Hazard. Mater. 424, 127516 (2022). https://doi.org/10.1016/j.jhazmat.2021.127516
Yamato, K., Yoshida, Y., Kumamoto, Y., Isogai, A.: Surface modification of TEMPO-oxidized cellulose nanofibers, and properties of their acrylate and epoxy resin composite films. Cellulose 29, 2839–2853 (2022). https://doi.org/10.1007/s10570-021-04131-y
Xie, Y., Hill, C.A.S., Xiao, Z., Militz, H., Mai, C.: Silane coupling agents used for natural fiber/polymer composites: a review. Compos. Part A Appl. Sci. Manuf. 41, 806–819 (2010). https://doi.org/10.1016/j.compositesa.2010.03.005
Gkaliou, K., Daugaard, A.E.: Silane and silazane surface modification of recycled glass fibers for polypropylene composites. J. Appl. Polym. Sci. 140, 5 (2022). https://doi.org/10.1002/app.53388
Wood, W., Kumar, S., Zhong, W.H.: Synthesis of organosilane-modified carbon nanofibers and influence of silane coating thickness on the performance of polyethylene nanocomposites. Macromol. Mater. Eng. 295, 1125–1135 (2010). https://doi.org/10.1002/mame.201000226
Nayak, L., Rahaman, M., Giri, R.: Surface modification/functionalization of carbon materials by different techniques: an overview. Polym. Compos. Mater. (2019). https://doi.org/10.1007/978-981-13-2688-2_2
Saedi, S., Garcia, C.V., Kim, J.T., Shin, G.H.: Physical and chemical modifications of cellulose fibers for food packaging applications. Cellulose 28, 8877–8897 (2021). https://doi.org/10.1007/s10570-021-04086-0
Rachini, A., le Troedec, M., Peyratout, C., Smith, A.: Chemical modification of hemp fibers by silane coupling agents. J. Appl. Polym. Sci. 123, 601–610 (2012). https://doi.org/10.1002/app.34530
Abdelmouleh, M., Boufi, S., Ben Salah, A., Belgacem, M.N., Gandini, A.: Interaction of silane coupling agents with cellulose. Langmuir 18, 3203–3208 (2002). https://doi.org/10.1021/la011657g
Hongrattanavichit, I., Aht-Ong, D.: Antibacterial and water-repellent cotton fabric coated with organosilane-modified cellulose nanofibers. Ind. Crops Prod. 171, 113858 (2021). https://doi.org/10.1016/j.indcrop.2021.113858
Kono, K., Uno, T., Tsujisaki, H., Anai, H., Kishimoto, R., Matsushima, T., Tajima, K.: Nanofibrillated bacterial cellulose surface modified with methyltrimethoxysilane for fiber-reinforced composites. Appl. Nano Mater. 3, 8232–8241 (2020). https://doi.org/10.1021/acsanm.0c01670
Saini, S., Belgacem, M.N., Bras, J.: Effect of variable aminoalkyl chains on chemical grafting of cellulose nanofiber and their antimicrobial activity. Mater. Sci. Eng. C 75, 760–768 (2017). https://doi.org/10.1016/j.msec.2017.02.062
Hokkanen, S., Repo, E., Suopajärvi, T., Liimatainen, H., Niinimaa, J., Sillanpää, M.: Adsorption of Ni(II), Cu(II) and Cd(II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. Cellulose 21, 1471–1487 (2014). https://doi.org/10.1007/s10570-014-0240-4
Yoshino, N., Yamamoto, Y., Hamano, K., Kawase, T.: Syntheses and reactions of metal organics. XVIII. Synetheses of (1H,1H,2H,2H-polyfluoroalkyl)trimethoxysilanes and surface modification of glass plate. Bull. Chem. Soc. Jpn. 66, 1754–1758 (1993). https://doi.org/10.1246/bcsj.66.1754
Chen, W., Karde, V., Cheng, T.N.H., Ramil, S.S., Heng, J.Y.Y.: Surface hydrophobicity: effect of alkyl chain length and network homogeneity. Front. Chem. Sci. Eng. 15, 90–98 (2021). https://doi.org/10.1007/s11705-020-2003-0
Kota, A.K., Kwon, G., Tuteja, A.: The design and applications of superomniphobic surfaces. NPG Asia Mater. 6, e109 (2014). https://doi.org/10.1038/am.2014.34
Owen, M.J., Williams, D.E.: Surface modification by fluoroalkyl-functional silanes: a review. J. Adhes. Sci. Technol. 5, 307–320 (1991). https://doi.org/10.1163/156856191X00378
Min, X., Wang, Y.: Enhanced adsorption of short-chain perfluorobutanoic acid by functionalized periodic mesoporous organosilica: performance and mechanisms. J. Hazard. Mater. 449, 131047 (2023). https://doi.org/10.1016/j.jhazmat.2023.131047
Xu, Z., Zhou, H., Jiang, X., Li, J., Huang, F.: Facile synthesis of reduced graphene oxide/trimethyl chlorosilane-coated cellulose nanofibres aerogel for oil absorption. IET Nanobiotechnol. 11, 929–934 (2017). https://doi.org/10.1049/iet-nbt.2017.0063
Baidya, A., Ganayee, M.A., Jakka Ravindran, S., Tam, K.C., Das, S.K., Ras, R.H.A., Pradeep, T.: Organic solvent-free fabrication of durable and multifunctional superhydrophobic paper from waterborne fluorinated cellulose nanofiber building blocks. ACS Nano 11, 11091–11099 (2017). https://doi.org/10.1021/acsnano.7b05170
Gu, L., Jiang, B., Song, J., Jin, Y., Xiao, H.: Effect of lignin on performance of lignocellulose nanofibrils for durable superhydrophobic surface. Cellulose 26, 933–944 (2019). https://doi.org/10.1007/s10570-018-2129-0
Shi, C., Chen, Y., Yu, Z., Li, S., Chan, H., Sun, S., Chen, G., He, M., Tian, J.: Sustainable and superhydrophobic spent coffee ground-derived holocellulose nanofibers foam for continuous oil/water separation. Sustain. Mater. Technol. 28, e00277 (2021). https://doi.org/10.1016/j.susmat.2021.e00277
Yang, Y., Zhao, X., Ye, L.: Facile construction of durable superhydrophobic cellulose paper for oil–water separation. Cellulose 30, 3255–3265 (2023). https://doi.org/10.1007/s10570-023-05074-2
Abraham, E., Cherpak, V., Senyuk, B., ten Hove, J.B., Lee, T., Liu, Q., Smalyukh, I.I.: Highly transparent silanized cellulose aerogels for boosting energy efficiency of glazing in buildings. Nat. Energy 8, 381–396 (2023). https://doi.org/10.1038/s41560-023-01226-7
Salon, M.C.B., Gerbaud, G., Abdelmouleh, M., Bruzzese, C., Boufi, S., Belgacem, M.N.: Studies of interactions between silane coupling agents and cellulose fibers with liquid and solid-state NMR. Magn. Reson. Chem. 45, 473–483 (2007). https://doi.org/10.1002/mrc.1994
Salon, M.C.B., Abdelmouleh, M., Boufi, S., Belgacem, M.N., Gandini, A.: Silane adsorption onto cellulose fibers: hydrolysis and condensation reactions. J. Colloid Interface Sci. 289, 249–261 (2005). https://doi.org/10.1016/j.jcis.2005.03.070
Atalla, R.H., Vanderhart, D.L.: The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl. Magn. Reson. 15, 1–19 (1999). https://doi.org/10.1016/S0926-2040(99)00042-9
Witter, R., Sternberg, U., Hesse, S., Kondo, T., Koch, F.T., Ulrich, A.S.: 13C chemical shift constrained crystal structure refinement of cellulose Iα and its verification by NMR anisotropy experiments. Macromolecules 39, 6125–6132 (2006). https://doi.org/10.1021/ma052439n
Patterson, G.D., Orts, W.J., McManus, J.D., Hsieh, Y.L.: Cellulose and lignocellulose nanofibrils and amphiphilic and wet-resilient aerogels with concurrent sugar extraction from almond hulls. ACS Agric. Sci. Technol. 3, 140–151 (2023). https://doi.org/10.1021/acsagscitech.2c00264
Xu, X., Hsieh, Y.L.: Aqueous exfoliated graphene by amphiphilic nanocellulose and its application in moisture-responsive foldable actuators. Nanoscale 11, 11719–11729 (2019). https://doi.org/10.1039/c9nr01602c
Khawas, P., Deka, S.C.: Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Carbohydr. Polym. 137, 608–616 (2016). https://doi.org/10.1016/j.carbpol.2015.11.020
Dai, H., Zhang, H., Chen, Y., Ma, L., Wu, J., Zhang, Y.: Co-stabilization and properties regulation of Pickering emulsions by cellulose nanocrystals and nanofibrils from lemon seeds. Food Hydrocoll. 120, 106884 (2021). https://doi.org/10.1016/j.foodhyd.2021.106884
Li, X., Li, J., Kuang, Y., Guo, S., Mo, L., Ni, Y.: Stabilization of Pickering emulsions with cellulose nanofibers derived from oil palm fruit bunch. Cellulose 27, 839–851 (2020). https://doi.org/10.1007/s10570-019-02803-4
Shahi, N., Min, B., Sapkota, B., Rangari, V.K.: Eco-friendly cellulose nanofiber extraction from sugarcane bagasse and film fabrication. Sustainability (2020). https://doi.org/10.3390/su12156015
Kanai, N., Nishimura, K., Umetani, S., Saito, Y., Saito, H., Oyama, T., Kawamura, I.: Upcycling of waste hop stems into cellulose nanofibers: isolation and structural characterization. ACS Agric. Sci. Technol. 1, 347–354 (2021). https://doi.org/10.1021/acsagscitech.1c00041
Kanai, N., Sakai, T., Yamada, K., Kumagai, S., Kawamura, I.: Using cellulose nanofibers isolated from waste hop stems to stabilize dodecane or olive oil-in-water Pickering emulsions. Colloids Surf. A 653, 129956 (2022). https://doi.org/10.1016/j.colsurfa.2022.129956
Fillat, Ú., Wicklein, B., MartÃn-Sampedro, R., Ibarra, D., Ruiz-Hitzky, E., Valencia, C., Sarrión, A., Castro, E., Eugenio, M.E.: Assessing cellulose nanofiber production from olive tree pruning residue. Carbohydr. Polym. 179, 252–261 (2018). https://doi.org/10.1016/j.carbpol.2017.09.072
Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A., Johnson, D.K.: Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 3, 10 (2010). https://doi.org/10.1186/1754-6834-3-10
Park, S., Johnson, D.K., Ishizawa, C.I., Parilla, P.A., Davis, M.F.: Measuring the crystallinity index of cellulose by solid state 13C nuclear magnetic resonance. Cellulose 16, 641–647 (2009). https://doi.org/10.1007/s10570-009-9321-1
Li, M., Tian, X., Jin, R., Li, D.: Preparation and characterization of nanocomposite films containing starch and cellulose nanofibers. Ind. Crops Prod. 123, 654–660 (2018). https://doi.org/10.1016/j.indcrop.2018.07.043
Li, J., Zhai, S., Wu, W., Xu, Z.: Hydrophobic nanocellulose aerogels with high loading of metal-organic framework particles as floating and reusable oil absorbents. Front. Chem. Sci. Eng. 15, 1158–1168 (2021). https://doi.org/10.1007/s11705-020-2021-z
Szabó, G., Szieberth, D., Nyulászi, L.: Theoretical study of the hydrolysis of chlorosilane. Struct. Chem. 26, 231–238 (2015). https://doi.org/10.1007/s11224-014-0543-y
Cypryk, M.: Hydrolysis of fluorosilanes: a theoretical study. J. Phys. Chem. A 109, 12020–12026 (2005). https://doi.org/10.1021/jp054779g
Pazokifard, S., Mirabedini, S.M., Esfandeh, M., Farrokhpay, S.: Fluoroalkylsilane treatment of TiO2 nanoparticles in difference pH values: characterization and mechanism. Adv. Powder Technol. 4, 428–436 (2012). https://doi.org/10.1016/j.apt.2012.02.006
Britcher, L.G., Kehoe, D.C., Malisons, J.G., Swincer, A.G.: Siloxane coupling agents. Macromolecules 28, 3110–3118 (1995). https://doi.org/10.1021/ma00113a013
Ilharco, L.M., Garcia, A.R., Lopes Da Silva, J., Ferreira, L.F.V.: Infrared approach to the study of adsorption on cellulose: influence of cellulose crystallinity on the adsorption of benzophenone. Langmuir 13, 4126–4132 (1997). https://doi.org/10.1021/la962138u
Huang, C.F., Tu, C.W., Lee, R.H., Yang, C.H., Hung, W.C., Andrew Lin, K.Y.: Study of various diameter and functionality of TEMPO-oxidized cellulose nanofibers on paraquat adsorptions. Polym. Degrad. Stab. 161, 206–212 (2019). https://doi.org/10.1016/j.polymdegradstab.2019.01.023
Lal, S.S., Mhaske, S.T.: TEMPO-oxidized cellulose nanofiber/kafirin protein thin film crosslinked by Maillard reaction. Cellulose 26, 6099–6118 (2019). https://doi.org/10.1007/s10570-019-02509-7
Kallapa, P.J., Kalleshappa, P.G., Eshwarappa, B.B., Basavarajappa, S., Betageri, V.S., Devendra, B.K.: Synthesis of cellulose nanofibers from lignocellulosic materials and their photocatalytic dye degradation studies. Int. Nano Lett. (2023). https://doi.org/10.1007/s40089-023-00402-7
Sun, X., Xu, W., Zhang, X., Lei, T., Lee, S.Y., Wu, Q.: ZIF-67@cellulose nanofiber hybrid membrane with controlled porosity for use as Li-ion battery separator. J. Energy Chem. 52, 170–180 (2021). https://doi.org/10.1016/j.jechem.2020.04.057
Aminayi, P., Abidi, N.: Imparting super hydro/oleophobic properties to cotton fabric by means of molecular and nanoparticles vapor deposition methods. Appl. Surf. Sci. 287, 223–231 (2013). https://doi.org/10.1016/j.apsusc.2013.09.132
Dhali, K., Daver, F., Cass, P., Adhikari, B.: Surface modification of the cellulose nanocrystals through vinyl silane grafting. Int. J. Biol. Macromol. 200, 397–408 (2022). https://doi.org/10.1016/j.ijbiomac.2022.01.079
Zhou, F., Cheng, G., Jiang, B.: Effect of silane treatment on microstructure of sisal fibers. Appl. Surf. Sci. 292, 806–812 (2014). https://doi.org/10.1016/j.apsusc.2013.12.054
Ramamoorthy, S.K., Skrifvars, M., Rissanen, M.: Effect of alkali and silane surface treatments on regenerated cellulose fibre type (Lyocell) intended for composites. Cellulose 22, 637–654 (2015). https://doi.org/10.1007/s10570-014-0526-6
Boutevin, B., Guida-Pietrasanta, F., Ratsimihety, A., Caporiccio, G., Gornowicz, G.: Study of the alkylation of chlorosilanes. Part I. Synthesis of tetra(1H,1H,2H,2H-polyfluoroalkyl)silanes. J. Fluor. 60, 211–223 (1993). https://doi.org/10.1016/S0022-1139(00)80035-4
Dua, S.S., Howells, R.D., Gilman, H.: Some perfluoroalkyl grignard reagents and their derivatives. J. Fluor. 4, 409–413 (1974). https://doi.org/10.1016/S0022-1139(00)85290-2
Furó, I., Iliopoulos, I., Stilbs, P.: Structure and dynamics of associative water-soluble polymer aggregates as seen by 19F NMR spectroscopy. J. Phys. Chem. B 104, 485–494 (2000). https://doi.org/10.1021/jp9927404
Labouriau, A., Cox, J.D., Schoonover, J.R., Patterson, B.M., Havrilla, G.J., Stephens, T., Taylor, D.: Mössbauer, NMR and ATR-FTIR spectroscopic investigation of degradation in RTV siloxane foams. Polym. Degrad. Stab. 92, 414–424 (2007). https://doi.org/10.1016/j.polymdegradstab.2006.11.017
Ben Mabrouk, A., Salon, M.C.B., Magnin, A., Belgacem, M.N., Boufi, S.: Cellulose-based nanocomposites prepared via mini-emulsion polymerization: understanding the chemistry of the nanocellulose/matrix interface. Colloids Surf. A 448, 1–8 (2014). https://doi.org/10.1016/j.colsurfa.2014.01.077
de Oliveira Taipina, M., Ferrarezi, M.M.F., Yoshida, I.V.P., do Carmo Gonçalves, M.: Surface modification of cotton nanocrystals with a silane agent. Cellulose 20, 217–226 (2013). https://doi.org/10.1007/s10570-012-9820-3
Long, L.Y., Weng, Y., Wang, Y.: Cellulose aerogels: synthesis, applications, and prospects. Polymers 10, 623 (2018). https://doi.org/10.3390/polym10060623
Takeshita, S., Ono, T.: Biopolymer-polysiloxane double network aerogels. Angew. Chem. Int. Ed. (2023). https://doi.org/10.1002/anie.202306518
Acknowledgements
Mr. Kosuke Nishimura and the Tono Ryokuho High School kindly provided the air-dried hop stems. We thank Mr. Shinji Ishihara of the Instrumental Analysis Center, Yokohama National University, for the technical assistance with the FTIR and SS-NMR spectroscopy.
Funding
This work was supported in part by JSPS KAKENHI (Grant Numbers JP21H05229, JP21J20591); JST COI-NEXT program (Grant Number JPMJPF2111); The Sumitomo Foundation (210760); and NEDO (Grant Number JPNP20004).
Author information
Authors and Affiliations
Contributions
KY, NK and IK wrote the manuscript. KY performed TEMPO-oxidized experiments of hop stems, and surface modification. KY performed FTIR. KY and IK performed all NMR experiments. All authors have read and approved the final version of the manuscript.
Corresponding author
Ethics declarations
Competing Interests
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Statement of novelty
Stems and leaves of hop (Humulus lupulus) accounting for approximately 75% of the biomass produced by hop cultivation are land-filled as agro-waste. In this work, fluorinated alkyl silane-modified cellulose nanofibers from waste hop stems were successfully prepared. Further, we found the relationship between the water-repellent function and the characteristic structure model. It provides the potential use of new biomass resources as hydrophobic materials.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Yamada, K., Kanai, N. & Kawamura, I. Evaluation of the Water Repellency and Structure of Cellulose Nanofibers Derived from Waste Hop Stems Using a Fluoroalkyl Silane Coupling Treatment. Waste Biomass Valor (2023). https://doi.org/10.1007/s12649-023-02254-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12649-023-02254-w