Skip to main content
Log in

Aleurites moluccana as a Potential Non-edible Feedstock for Industrial-Scale Biodiesel Synthesis Using Homemade Zinc Oxide Nanoparticles as a Catalyst

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Biodiesel is a potential substitute for fossil oils because of its almost similar physico–chemical fuel properties to fossil diesel. The present work aimed to synthesize biodiesel from the non-edible seed oil of Aleurites moluccana using ZnO nanoparticles synthesized in the laboratory. The synthesis and physical properties of ZnO nanoparticles were confirmed through XRD and SEM. Moreover, the fuel properties of the synthesized biodiesel were checked through the standard procedures of ASTM and compared with the limits of ASTM. The chemical properties were studied quantitatively and qualitatively through FT-IR, GC–MS, and NMR spectroscopy. The result confirms that the current feedstock is suitable for biodiesel synthesis on industrial scale because of its oil contents (47.2%). The transesterification process was followed as the FFA value of the oil is 0.39 KOH mg/kg. Parametric experiments were conducted in a sequence to set a condition for optimum yield. The result indicates that optimum biodiesel yield was achieved at 1:27 oil to methanol ratio using 25 mg catalyst concentration at a temperature of 60 °C, and a reaction time of 60 min. It is obvious from the result that most of the fuel properties were according to the standards of ASTM D-6751. Furthermore, GC–MS analysis confirms 14 different types of fatty acids methyl esters in the feedstock. FT-IR, 1H-NMR, and 13C-NMR analysis showed important peaks that confirm the successful synthesis of biodiesel. The physico–chemical properties of the synthesized biodiesel confirm that it is a competitive source for manufacturing biodiesel on commercial scale.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The detail data is already given above in the result section of the manuscript.

Abbreviations

AMB:

Aleurites moluccana biodiesel

ZnO:

Zinc oxide

FFA:

Free fatty acid

SEM:

Scanning electron microscopy

XRD:

X-rays diffraction

H and C-NMR:

Nuclear magnetic resonance

GC-MS:

Gas chromatography mass spectrometry

FT-IR spectroscopy:

Fourier transform infrared spectroscopy

ASTM:

American Society for Testing and Materials

FAME:

Fatty acid methyl esters

PMDC:

Flash point °C

CP:

Clod point

PP:

Pour point

HHV:

Higher heating value

References

  1. Basumatary, S., Nath, B., Kalita, P.: Application of agro-waste derived materials as heterogeneous base catalysts for biodiesel synthesis. J. Renew. Sustain. Energy 10(4), 043105 (2018). https://doi.org/10.1063/1.5043328

    Article  CAS  Google Scholar 

  2. Nath, B., Das, B., Kalita, P., Basumatary, S.: Waste to value addition: utilization of waste Brassicanigra plant derived novel green heterogeneous base catalyst for effective synthesis of biodiesel. J. Clean Prod. 239, 11811 (2019). https://doi.org/10.1016/j.jclepro.2019.118112

    Article  CAS  Google Scholar 

  3. Brahma, S., Nath, B., Basumatary, B., Das, B., Saikia, P., Patir, K., Basumatary, S.: Biodiesel production from mixed oils: a sustainable approach towards industrial biofuel production. Chem. Eng. J. Adv. (2022). https://doi.org/10.1016/j.ceja.2022.100284

    Article  Google Scholar 

  4. Al-Mawali, K.S., Osman, A.I., Ala’a, H., Mehta, N., Jamil, F., Mjalli, F., Rooney, D.W.: Life cycle assessment of biodiesel production utilising waste date seed oil and a novel magnetic catalyst: a circular bioeconomy approach. Renew. Energy 170, 832–846 (2021). https://doi.org/10.1016/j.renene.2021.02.027

    Article  CAS  Google Scholar 

  5. Ala’a, H., Osman, A.I., Kumar, P.S.M., Jamil, F., Al-Haj, L., Al Nabhani, A., Rooney, D.W.: Circular economy approach of enhanced bifunctional catalytic system of CaO/CeO2 for biodiesel production from waste loquat seed oil with life cycle assessment study. Ener. Convers. Manag. 236, 114040 (2021)

    Article  Google Scholar 

  6. Ahmad, S., Chaudhary, S., Pathak, V.V., Kothari, R., Tyagi, V.V.: Optimization of direct transesterification of Chlorella pyrenoidosa catalyzed by waste egg shell based heterogenous nano–CaO catalyst. Renew. Energy 160, 86–97 (2020). https://doi.org/10.1016/j.renene.2020.06.010

    Article  CAS  Google Scholar 

  7. Deshmane, V.G., Gogate, P.R., Pandit, A.B.: Ultrasound-assisted synthesis of biodiesel from palm fatty acid distillate. Ind. Eng. Chem. Res. 48(17), 7923–7927 (2009). https://doi.org/10.1021/ie800981v

    Article  CAS  Google Scholar 

  8. Toledo Arana, J., Torres, J.J., Acevedo, D.F., Illanes, C.O., Ochoa, N.A., Pagliero, C.L.: One-step synthesis of CaO–ZnO efficient catalyst for biodiesel production. Inter J. Chem. Eng. (2019). https://doi.org/10.1155/2019/1806017

    Article  Google Scholar 

  9. Bohlouli, A., Mahdavian, L.: Catalysts used in biodiesel production: a review. Biofuels 12(8), 885–898 (2021). https://doi.org/10.1080/17597269.2018.1558836

    Article  CAS  Google Scholar 

  10. Ala’a, H., Osman, A.I., Jamil, F., Mehta, N., Al-Haj, L., Coulon, F., Rooney, D.W.: Integrating life cycle assessment and characterisation techniques: a case study of biodiesel production utilising waste Prunus armeniaca seeds (PAS) and a novel catalyst. J. Environ. Manag. 304, 114319 (2022). https://doi.org/10.1016/j.jenvman.2021.114319

    Article  CAS  Google Scholar 

  11. Naylor, R.L., Higgins, M.M.: The political economy of biodiesel in an era of low oil prices. Renew Sustain. Energy Rev. 77, 695–705 (2017). https://doi.org/10.1016/j.rser.2017.04.026

    Article  Google Scholar 

  12. Saidani, T., Zaabat, M., Aida, M.S., Barille, R., Rasheed, M., Almohamed, Y.: Influence of precursor source on sol–gel deposited ZnO thin films properties. J. Mater. Sci.: Mater. Electron. 28, 9252–9257 (2017)

    CAS  Google Scholar 

  13. Aslinjensipriya, A., Narmadha, S., Deepapriya, S., John, D.R., Grace, I.S., Reena, R.S., Jerome, D.S.: Synthesis and characterization of ZnO nanoparticles by novel sol gel technique. In AIP conference proceedings, Vol. 2244, No. 1, p. 070013. AIP Publishing LLC. (2020)

  14. Jan, H.A., Šurina, I., Zaman, A., Al-Fatesh, A.S., Rahim, F., Al-Otaibi, R.L.: Synthesis of biodiesel from Ricinus communis L. seed oil, a promising non-edible feedstock using calcium oxide nanoparticles as a catalyst. Energies 15(17), 6425 (2022)

    Article  Google Scholar 

  15. Joshi, A., Singhal, P., Bachheti, R.K.: Physicochemical characterization of seed oil of Jatropha curcus L. from Dehradun (Uttarakhand) Indian. J. Appl. Biol. Pharm. Technol. 2, 123e7 (2011)

    Google Scholar 

  16. Jan, H.A., Saqib, N.U., Khusro, A., Sahibzada, M.U.K., Rauf, M., Alghamdi, S., Mohafez, H.: Synthesis of biodiesel from Carthamustinctorius L. oil using TiO2 nanoparticles as a catalyst. J. King Saudi Univ. Sci. 34(8), 102317 (2022)

    Article  Google Scholar 

  17. Ullah, K., Jan, H.A., Ahmad, M., Ullah, A.: Synthesis and structural characterization of biofuel from Cocklebur sp., using zinc oxide nanoparticle: a novel energy crop for bioenergy industry. Front. Bioeng. Biotech. 8, 756 (2020). https://doi.org/10.3389/fbioe.2020.00756

    Article  Google Scholar 

  18. Takase, M., Feng, W., Wang, W., Gu, X., Zhu, Y., Li, T., Wu, X.: Silybum marianum oil as a new potential nonedible feedstock for biodiesel: a comparison of its production using conventional and ultrasonic assisted method. Fuel Process. Tech 123, 19–26 (2014). https://doi.org/10.1016/j.fuproc.2014.01.032

    Article  CAS  Google Scholar 

  19. Fadhil, A.B., Ahmed, K.M., Dheyab, M.M.: Silybum marianum L. seed oil: a novel feedstock for biodiesel production. Arab. J. Chem. 10, 683–690 (2017). https://doi.org/10.1016/j.arabjc.2012.11.009

    Article  CAS  Google Scholar 

  20. Jan, H.A., Šurina, I., Al-Fatesh, A.S., Almutlaq, A.M., Wali, S., Lisý, A.: Biodiesel synthesis from milk thistle (Silybum marianum (L.) Gaertn.) seed oil using ZnO nanoparticles as a catalyst. Energy 15(20), 7818 (2022)

    CAS  Google Scholar 

  21. Babar, U.D., Garad, N.M., Mohite, A.A., Babar, B.M., Shelke, H.D., Kamble, P.D., Pawar, U.T.: Study the photovoltaic performance of pure and Cd-doped ZnO nanoparticles prepared by reflux method. Mater. Today: Proc. 43, 2780–2785 (2021)

    CAS  Google Scholar 

  22. Dawood, S., Koyande, A.K., Ahmad, M., Mubashir, M., Asif, S., Klemeš, J.J., Show, P.L.: Synthesis of biodiesel from non-edible (Brachychiton populneus) oil in the presence of nickel oxide nanocatalyst: parametric and optimisation studies. Chemosphere 278, 130469 (2021)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Gowthambabu, V., Balamurugan, A., Satheeshkumar, S., Kanmani, S.S.: ZnO nanoparticles as efficient sunlight driven photocatalyst prepared by solution combustion method involved lime juice as biofuel. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 258, 119857 (2021)

    Article  CAS  Google Scholar 

  24. Palanisamy, V.K., Manoharan, K., Raman, K., Sundaram, R.: Efficient sunlight-driven photocatalytic behavior of zinc sulfide nanorods towards rose Bengal degradation. J. Mater. Sci. Mater. Electron. 31(17), 14795–14809 (2020)

    Article  CAS  Google Scholar 

  25. Awual, M.R., Yaita, T., Shiwaku, H.: Design a novel optical adsorbent for simultaneous ultra-trace cerium (III) detection, sorption and recovery. Chem. Eng. J. 228, 327–335 (2013)

    Article  CAS  Google Scholar 

  26. Syazwani, O.N., Rashid, U., Yap, Y.H.: Low-cost solid catalyst derived from waste Cyrtopleura costata (Angel Wing Shell) for biodiesel production using microalgae oil. Energy Convers. Manag. 101, 749–756 (2015)

    Article  Google Scholar 

  27. Talukdar, A., Deka, D.C.: Preparation and characterization of a heterogeneous catalyst from water hyacinth (Eichhornia crassipes): catalytic application in the synthesis of bis (indolyl) methanes and bis (pyrrolyl) methanes under solvent free condition. Curr. Catal. 5(1), 51–65 (2016)

    Article  CAS  Google Scholar 

  28. Nath, B., Das, B., Kalita, P., Basumatary, S.: Waste to value addition: utilization of waste Brassica nigra plant derived novel green heterogeneous base catalyst for effective synthesis of biodiesel. J Clean. Prod. 239, 118112 (2019)

    Article  CAS  Google Scholar 

  29. Kumar, K.: Standardization of nonedible Pongamia pinnata oil methyl ester conversion using hydroxyl content and GC–MS analysis. J. Taiwan. Inst. Chem. Eng. 45(4), 1485–1489 (2013). https://doi.org/10.1016/j.jtice.2013.11.002

    Article  CAS  Google Scholar 

  30. Miao, X., Wu, Q.: Biodiesel production from heterotrophic microalgal oil. Biores. Tech. 97, 841–846 (2006). https://doi.org/10.1016/j.biortech.2005.04.008

    Article  CAS  Google Scholar 

  31. Encinar, J.M., González, J.F., Sabio, E., Ramiro, M.J.: Preparation and properties of biodiesel from Cynara cardunculus L. oil. Ind. Eng. Chem. Res. 38, 2927–2931 (1999). https://doi.org/10.1021/ie990012x

    Article  CAS  Google Scholar 

  32. Srilatha, K., Lingaiah, N., Devi, B.P., Prasad, R.B.N., Venkateswar, S., Prasad, P.S.: Esterification of free fatty acids for biodiesel production over heteropoly tungstate supported on niobia catalysts. App. Cata. A: Gene 365(1), 28–33 (2009). https://doi.org/10.1016/j.apcata.2009.05.025

    Article  CAS  Google Scholar 

  33. Leung, D.Y.C., Guo, Y.: Transesterification of neat and used frying oil: optimization for biodiesel production. Fuel Process. Tech. 87(10), 883–890 (2006). https://doi.org/10.1016/j.fuproc.2006.06.003

    Article  CAS  Google Scholar 

  34. Bojan, S.G., Durairaj, S.K.: Producing biodiesel from high free fatty acid Jatropha curcas oil by a two step method-an Indian case study. J. Sustain. Energy Environ. 3, 63–66 (2012)

    Google Scholar 

  35. Silva, C.D., Oliveira, J.V.: Biodiesel production through non-catalytic supercritical transesterification: current state and perspectives. Braz J. Chem. Eng. 31, 271–285 (2014). https://doi.org/10.1590/0104-6632.20140312s00002616

    Article  Google Scholar 

  36. Barros, S.D.S., Junior, W.A.P., Sá, I.S., Takeno, M.L., Nobre, F.X., Pinheiro, W., de Freitas, F.A.: Pineapple (Ananás comosus) leaves ash as a solid base catalyst for biodiesel synthesis. Biores. Tech. 312, 123569 (2020). https://doi.org/10.1016/j.biortech.2020.123569

    Article  CAS  Google Scholar 

  37. Arora, R., Kapoor, V., Toor, A.P.: Esterification of free fatty acids in waste oil using a carbon-based solid acid catalyst. In: 2nd International Conference on Emerging Trends in Engineering and Technology (ICETET'2014), London, 30–31 May 2014. 196–199. https://doi.org/10.15242/IIE.E0514546

  38. Dhawane, S.H., Karmakar, B., Ghosh, S., Halder, G.: Parametric optimization of biodiesel synthesis from waste cooking oil via Taguchi approach. J. Environ. Chem. Eng. 6(4), 3971–3980 (2018). https://doi.org/10.1016/j.jece.2018.05.053

    Article  CAS  Google Scholar 

  39. Phan, A.N., Phan, T.M.: Biodiesel production from waste cooking oils. Fuel 87(17–18), 3490–3496 (2008). https://doi.org/10.1016/j.fuel.2008.07.008

    Article  CAS  Google Scholar 

  40. Niju, S., Begum, K.M.S., Anantharaman, N.: Enhancement of biodiesel synthesis over highly active CaO derived from natural white bivalve clam shell. Arab. J. Chem. 9(5), 633–639 (2016). https://doi.org/10.1016/j.arabjc.2014.06.006

    Article  CAS  Google Scholar 

  41. Mathiyazhagan, M., Ganapathi, A.: Factors affecting biodiesel production. Res. Plant. Bio 1(2), 1–5 (2011). https://doi.org/10.1016/S0960-8524(03)00150-0

    Article  CAS  Google Scholar 

  42. Gebremariam, S.N., Marchetti, J.M.: Economics of biodiesel production. Ener. Conver. Manag. 168, 74–84 (2018). https://doi.org/10.1016/j.enconman.2018.05.002

    Article  CAS  Google Scholar 

  43. Deng, X., Fang, Z., Liu, Y., Yu, C.L.: Production of biodiesel from Jatropha oil catalyzed by nanosized solid basic catalyst. Energy 36, 1–8 (2011)

    Article  CAS  Google Scholar 

  44. Laskar, I.B., Rokhum, L., Gupta, R., Chatterjee, S.: Zinc oxide supported silver nanoparticles as a heterogeneous catalyst for production of biodiesel from palm oil. Environ. Prog. Sustain. Energy 39(3), e13369 (2020)

    Article  CAS  Google Scholar 

  45. Tang, Y., Meng, M., Zhang, J., Lu, Y.: Efficient preparation of biodiesel from rapeseed oil over modified CaO. Appl. Energy 88(8), 2735–2739 (2011). https://doi.org/10.1016/j.apenergy.2011.02.033

    Article  ADS  CAS  Google Scholar 

  46. Usmanov, R.A., Mazanov, S.V., Gabitova, A.R., Miftakhova, L.K., Gumerov, F.M., Musin, R.Z., Abdulagatov, I.M.: The effect of fatty acid ethyl esters concentration on the kinematic viscosity of biodiesel fuel. J. Chem. Eng. Data 60(11), 3404–3413 (2015)

    Article  CAS  Google Scholar 

  47. Gashaw, A., Lakachew, A.: Production of biodiesel from non edible oil and its properties. Int. J. Sci. Environ. Tech. 3(4), 1544–1562 (2014)

    Google Scholar 

  48. Kaisan, M.U., Anafi, F.O., Nuszkowski, J., Kulla, D.M., Umaru, S.: Calorific value, flash point and cetane number of biodiesel from cotton, jatropha and neem binary and multi-blends with diesel. Biofuels (2017). https://doi.org/10.1080/17597269.2017.1358944

    Article  Google Scholar 

  49. Dias, J.M., Alvim-Ferraz, M., Almeida, M.F.: Comparison of the performance of different homogeneous alkali catalysts during transesterification of waste and virgin oils and evaluation of biodiesel quality. Fuel 87, 3572–3578 (2008). https://doi.org/10.1016/j.fuel.2008.06.014

    Article  CAS  Google Scholar 

  50. Refaat, A.A., Attia, N.K., AMBak, H.A., El Sheltawy, S.T., El Diwani, G.I.: Production optimization and quality assessment of biodiesel from waste vegetable oil. Int. J. Environ. Sci. Tech. 5, 75–82 (2008). https://doi.org/10.1007/BF03325999

    Article  CAS  Google Scholar 

  51. García-Martín, J.F., Alés-Álvarez, F.J., del López-Barrera, M.C., Martín-Domínguez, I., Álvarez-Mateos, P.: Cetane number prediction of waste cooking oil-derived biodiesel prior to transesterification reaction using near infrared spectroscopy. Fuel 240, 10–15 (2019)

    Article  Google Scholar 

  52. Selaimia, R., Beghiel, A., Oumeddour, R.: The synthesis of biodiesel from vegetable oil. Procedia Soc. Behav. Sci. 195, 1633–1638 (2015)

    Article  Google Scholar 

  53. Imdadul, H.K., Zulkifli, N.W.M., Masjuki, H.H., Kalam, M.A., Kamruzzaman, M., Rashed, M.M., Alwi, A.: Experimental assessment of non-edible candlenut biodiesel and its blend characteristics as diesel engine fuel. Environ. Sci. Pollut. Res. 24, 2350–2363 (2017)

    Article  CAS  Google Scholar 

  54. Shaah, M.A., Hossain, M.S., Allafi, F., Ab Kadir, M.O., Ahmad, M.I.: Biodiesel production from candlenut oil using a non-catalytic supercritical methanol transesterification process: optimization, kinetics, and thermodynamic studies. RSC Adv. 12(16), 9845–9861 (2022)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bannister, C.D., Chuck, C.J., Bounds, M., Hawley, J.G.: Oxidative stability of biodiesel fuel. Proc Inst. Mech. Eng, Part D: J Auto Eng 225(1), 99–114 (2011). https://doi.org/10.1243/09544070JAUTO1549

    Article  CAS  Google Scholar 

  56. Kumar, N.: Oxidative stability of biodiesel: causes, effects and prevention. Fuel 190, 328–350 (2017). https://doi.org/10.1016/j.fuel.2016.11.001

    Article  CAS  Google Scholar 

  57. Fregolente, P.B.L., Fregolente, L.V., Wolf Maciel, M.R.: Water content in biodiesel, diesel, and biodiesel–diesel blends. J. Chem. Eng. Data 57(6), 1817–1821 (2012). https://doi.org/10.1021/je300279c

    Article  CAS  Google Scholar 

  58. da Costa Cardoso, L., de Almeida, F.N.C., Souza, G.K., Asanome, I.Y., Pereira, N.C.: Synthesis and optimization of ethyl esters from fish oil waste for biodiesel production. Renew. Energy 133, 743–748 (2019). https://doi.org/10.1016/j.renene.2018.10.081

    Article  CAS  Google Scholar 

  59. Lugo-Méndez, H., Sánchez-Domínguez, M., Sales-Cruz, M., Olivares-Hernández, R., Lugo-Leyte, R., Torres-Aldaco, A.: Synthesis of biodiesel from coconut oil and characterization of its blends. Fuel 295, 120595 (2021). https://doi.org/10.1016/j.fuel.2021.120595

    Article  CAS  Google Scholar 

  60. Demirbaş, A.: Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Convers. Manag. 44(13), 2093–2109 (2003). https://doi.org/10.1016/S0196-8904(02)00234-0

    Article  CAS  Google Scholar 

  61. Sivaramakrishnan, K., Ravikumar, P.: Determination of higher heating value of biodiesels. Inter J. Engin Sci. & Tech. 3(11), 7981–7987 (2011)

    Google Scholar 

  62. Adewuyi, A., Awolade, P.O., Oderinde, R.A.: Hura crepitans seed oil: an alternative feedstock for biodiesel production. J. Fuels (2014). https://doi.org/10.1155/2014/464590

    Article  Google Scholar 

  63. Tariq, M., Ali, S., Ahmad, F., Ahmad, M., Zafar, M., Khalid, N., Khan, M.A.: Identification, FT-IR, NMR (1H and 13C) and GC/MS studies of fatty acid methyl esters in biodiesel from rocket seed oil. Fuel Proc. Tech. 92(3), 336–341 (2011). https://doi.org/10.1016/j.fuproc.2010.09.025

    Article  CAS  Google Scholar 

  64. Ullah, K., Ahmad, M., Qiu, F.: Assessing the experimental investigation of milk thistle oil for biodiesel production using base catalyzed transesterification. Energy 89, 887–895 (2015). https://doi.org/10.1016/j.energy.2015.06.028

    Article  CAS  Google Scholar 

  65. Shaheen, A., Sultana, S., Lu, H., Ahmad, M., Asma, M., Mahmood, T.: Assessing the potential of different nano-composite (MgO, Al2O3–CaO and TiO2) for efficient conversion of Silybum eburneum seed oil to liquid biodiesel. J. Mol. Liq. 249, 511–521 (2018)

    Article  CAS  Google Scholar 

  66. Martín, C., Moure, A., Martín, G., Carrillo, E., Domínguez, H., Parajó, J.C.: Fractional characterisation of jatropha, neem, moringa, trisperma, castor and candlenut seeds as potential feedstocks for biodiesel production in Cuba. Biomass Bioeng. 34(4), 533–538 (2010)

    Article  Google Scholar 

  67. Asci, F., Aydin, B., Akkus, G.U., Unal, A., Erdogmus, S.F., Korcan, S.E., Jahan, I.: Fatty acid methyl ester analysis of Aspergillus fumigatus isolated from fruit pulps for biodiesel production using GC–MS spectrometry. Bioengineering 11(1), 408–415 (2020). https://doi.org/10.1080/21655979.2020.1739379

    Article  CAS  Google Scholar 

  68. Miglio, R., Palmery, S., Salvalaggio, M., Carnelli, L., Capuano, F., Borrelli, R.: Microalgae triacylglycerols content by FT-IR spectroscopy. J. Appl. Phycol. 25(6), 1621–1631 (2013). https://doi.org/10.1007/s10811-013-0007-6

    Article  CAS  Google Scholar 

  69. O’Donnell, S., Demshemino, I., Yahaya, M., Nwadike, I., Okoro, L.: A review on the spectroscopic analyses of biodiesel. Eu. Inter. J. Sci. Tech. 2(7), 137–146 (2013)

    Google Scholar 

  70. Atabani, A.E., Shobana, S., Mohammed, M.N., Uğuz, G., Kumar, G., Arvindnarayan, S., Ala’a, H.: Integrated valorization of waste cooking oil and spent coffee grounds for biodiesel production: blending with higher alcohols, FT-IR, TGA, DSC and NMR characterizations. Fuel 244, 419–430 (2019). https://doi.org/10.1016/j.fuel.2019.01.169

    Article  CAS  Google Scholar 

  71. Andrade, T.A., Errico, M., Christensen, K.V.: Transesterification of castor oil catalyzed by liquid enzymes: optimization of reaction conditions. Comp. Aided Chem. Eng. 40, 2863–2868 (2017). https://doi.org/10.1016/B978-0-444-63965-3.50479-7

    Article  CAS  Google Scholar 

  72. Elango, R.K., Sathiasivan, K., Muthukumaran, C., Thangavelu, V., Rajesh, M., Tamilarasan, K.: Transesterification of castor oil for biodiesel production: process optimization and characterization. Microchem. J. (2019). https://doi.org/10.1016/j.microc.2018.12.039

    Article  Google Scholar 

  73. Knothe, G.: Monitoring a progressing transesterification reaction by fiber optic NIR spectroscopy with correlation to 1H NMR spectroscopy. J. Am. Oil Chem. Soc. 77, 489e93 (2000). https://doi.org/10.1007/s11746-000-0078-5

    Article  Google Scholar 

  74. Portela, N.A., Oliveira, E.C., Neto, A.C., Rodrigues, R.R., Silva, S.R., Castro, E.V., Filgueiras, P.R.: Quantification of biodiesel in petroleum diesel by 1H NMR: evaluation of univariate and multivariate approaches. Fuel 166, 12–18 (2016). https://doi.org/10.1016/j.fuel.2015.10.091

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I am thankful to all those persons and organizations that help me in the completion of this work.

Funding

The authors did not receive funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors listed above have equal, direct, and intellectual contributions and have approved the current work for publication in this journal.

Corresponding author

Correspondence to Hammad Ahmad Jan.

Ethics declarations

Conflict of interest

The author declares that he has no competing financial interest for the work in this presented paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jan, H.A., Saqib, N.U., Aamir, A. et al. Aleurites moluccana as a Potential Non-edible Feedstock for Industrial-Scale Biodiesel Synthesis Using Homemade Zinc Oxide Nanoparticles as a Catalyst. Waste Biomass Valor 15, 1081–1095 (2024). https://doi.org/10.1007/s12649-023-02238-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02238-w

Keywords

Navigation