Skip to main content

Advertisement

Log in

Pyrolysis Characteristics of Anaerobic Biogas Solid Residue from Kitchen Waste

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

With urban dry and wet waste classification utilized, kitchen waste is sorted out and used for achieving anaerobic biogas, in which biogas solid residue is produced meanwhile. The purpose of this article is to clarify the pyrolysis characteristics of the biogas solid residue using thermo-gravimetric analyzer and Py-GC/MS. The main research results include: (1) The dried biogas solid residue sample has more volatile matter, accounting for 62% .The ash accounting for 37.52%. (2) There are two dominant pyrolysis peaks in thermal gravimetric curves of biogas solid residue, located at low temperature about 200–300 °C. The lower activation energy of pyrolysis rate under 100–250 oC is related to the previous anaerobic digestion process. The third peak position occurs at 750 °C due to calcination of CaCO3 in ash. (3) The amount of alcohols and acid in pyrolysis gas increases first and then decreases with the increase of temperature. The pyrolysis of ether organics mainly occurs at lower temperature, 200 °C. Those productions are assumed to be derived from lipid degradation during pyrolysis. (4) The ash of biogas solid residue obtained under 400 oC is rich in Na, K and Cl. A proper approach could convert biogas solid residue to more amount of pyrolysis gas, keeping the temperature under 600 °C. And most Na, K and Cl retain in the residue, as beneficiates the biogas quality and favors the following-up combustion behavior avoiding slagging problem in combustion chamber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

Abbreviations

ar:

As-received

db:

Dried-baisis

DMS:

Direct melting system

MBT:

Mechanical biological treatment

Py-GC/MS:

Pyrolysis-gas chromatography/mass spectrometry

WtE:

Waste-to-Energy

References

  1. Thanopoulos, S., Karellas, S., Kavrakos, M., Konstantellos, G., Tzempelikos, D., Kourkoumpas, D.: Analysis of alternative MSW treatment technologies with the aim of energy recovery in the municipality of vari-voula-vouliagmeni. Waste Biomass Valoriz. 11, 1585–1601 (2020)

    Article  Google Scholar 

  2. Malav, L.C., Yadav, K.K., Gupta, N., Kumar, S., Sharma, G.K., Krishnan, S., Rezania, S., Kamyab, H., Pham, Q.B., Yadav, S., Bhattacharyya, S., Yadav, V.K., Bach, Q.V.: A review on municipal solid waste as a renewable source for waste-to-energy project in India: current practices, challenges, and future opportunities. J. Clean. Prod. 277, 123227 (2020)

    Article  Google Scholar 

  3. Xiao, S., Dong, H., Geng, Y., Francisco, M.J., Pan, H., Wu, F.: An overview of the municipal solid waste management modes and innovations in Shanghai, China. Environ. Sci. Pollut. Res. 27, 29943–29953 (2020)

    Article  Google Scholar 

  4. Lopez, V.M., Cruz, F.B.D., Barlaz, M.A.: Chemical composition and methane potential of commercial food wastes. Waste Manag. 56, 477–490 (2016)

    Article  CAS  PubMed  Google Scholar 

  5. Directive 2009/28/EC in Europe. (DIRECTIVE 2009/28/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23: April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/77/EC and 2003/30/EC)

  6. Molino, A., Nanna, F., Ding, Y., Bikson, B., Braccio, G.: Biomethane production by anaerobic digestion of organic waste. Fuel 103, 1003–1009 (2013)

    Article  CAS  Google Scholar 

  7. Christensen, T.: Solid waste technology and management, 1st edn. Wiley, Hoboken (2011)

    Google Scholar 

  8. Thanos Bourtsalas, A.C., Themelis, N.J.: Materials and energy recovery at six european MBT plants. Waste Manag. 141, 79–91 (2022)

    Article  CAS  PubMed  Google Scholar 

  9. Neumanna, J., Binder, S., Apfelbacher, A., Gasson, J.R., García, P.R., Hornung, A.: Production and characterization of a new quality pyrolysis oil, char and syngas from digestate-introducing the thermo-catalytic reforming process. J. Anal. Appl. Pyrol. 113, 137–142 (2015)

    Article  Google Scholar 

  10. Odlare, M., Abubaker, J., Lindmark, J., Pell, M., Thorin, E., Nehrenheim, E.: Emissions of N2O and CH4 from agricultural soils amended with two types of biogas residues. Biomass Bioenergy 44, 112–116 (2012)

    Article  CAS  Google Scholar 

  11. Arthurson, V.: Closing the global energy and nutrient cycles through application of biogas residue to agricultural land – potential benefits and drawback. Energies 2(2), 226 (2009)

    Article  CAS  Google Scholar 

  12. Wang, S.L., Yang, J.S., Wang, R.L., Li, R.Q., Wang, S.T., Liu, K.F.: Effects of biogas residue on soil improvement in peach orchard. Appl. Mech. Mater. 3547(675–677), 738–741 (2014)

    Article  Google Scholar 

  13. Nkoa, R.: Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agron. Sustain. Dev. 34(2), 473–492 (2014)

    Article  Google Scholar 

  14. He, J., Zhu, N., Xu, Y., Wang, L., Zheng, J., Li, X.: The microbial mechanisms of enhanced humification by inoculation with Phanerochaete chrysosporium and Trichoderma longibrachiatum during biogas residues composting. Bioresour. Technol. 351, 126973–126973 (2022)

    Article  CAS  PubMed  Google Scholar 

  15. Meng, X., Yan, J., Zuo, B., Wang, Y., Yuan, X., Cui, Z.: Full-scale of composting process of biogas residues from corn stover anaerobic digestion: physical-chemical, biology parameters and maturity indexes during whole process. Bioresour. Technol. 302(C), 122742 (2020)

    Article  CAS  PubMed  Google Scholar 

  16. Govasmark, E., Stäb, J., Holen, B., Hoornstra, D., Nesbakk, T., Salkinoja-Salonen, M.: Chemical and microbiological hazards associated with recycling of anaerobic digested residue intended for agricultural use. Waste Manag. 31(12), 2577–2583 (2011)

    Article  CAS  PubMed  Google Scholar 

  17. Kratzeisen, M., Starcevic, N., Martinov, M., Maurer, C., Müller, J.: Applicability of biogas digestate as solid fuel. Fuel 89, 2544–2548 (2010)

    Article  CAS  Google Scholar 

  18. Tao, K., Vladimir, S., Tim, E.: Effect of the heating rate on the thermochemical behavior and biofuel properties of sewage sludge pyrolysis. Energy & Fuels 30(3), 1564–1570 (2016)

    Article  Google Scholar 

  19. Wang, T., Ye, X., Yin, J., Lu, Q., Zheng, Z., Dong, C.: Effects of biopretreatment on pyrolysis behaviors of corn stalk by methanogen. Bioresour. Technol. 164, 416–419 (2014)

    Article  CAS  PubMed  Google Scholar 

  20. Wang, T., Ye, X., Yin, J., Jin, Z., Lu, Q., Zheng, Z., Dong, C.: Fast pyrolysis product distribution of biopretreated corn stalk by methanogen. Bioresour. Technol. 169, 812–815 (2014)

    Article  CAS  PubMed  Google Scholar 

  21. Liang, S., Han, Y., Wei, L., McDonald, A.G.: Production and characterization of bio-oil and bio-char from pyrolysis of potato peel wastes. Biomass Convers. Biorefin. 5(3), 237–246 (2015)

    Article  CAS  Google Scholar 

  22. Liu, J., Huang, S., Chen, K., Wang, T., Mei, M., Li, J.: Preparation of biochar from food waste digestate: pyrolysis behavior and product properties. Bioresour. Technol. 302(C), 122841 (2020)

    Article  CAS  PubMed  Google Scholar 

  23. Pan, J., Gao, B., Wang, S., Guo, K., Xu, X., Yue, Q.: Waste-to-resources: green preparation of magnetic biogas residues-based biochar for effective heavy metal removals. Sci. Total Environ. 737, 140283–140283 (2020)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Liu, H., Wang, X., Fang, Y., Lai, W., Xu, S., Eric, L.: Enhancing thermophilic anaerobic co-digestion of sewage sludge and food waste with biogas residue biochar. Renew. Energy 188, 465–475 (2022)

    Article  ADS  CAS  Google Scholar 

  25. David, E., Kopač, J.: Upgrading the characteristics of the bio-oil obtained from rapeseed oil cake pyrolysis through the catalytic treatment of its vapors. J. Anal. Appl. Pyrol. 141, 104638–104638 (2019)

    Article  CAS  Google Scholar 

  26. Shao, J., Yan, R., Chen, H., Yang, H., Lee, D.H.: Catalytic effect of metal oxides on pyrolysis of sewage sludge. Fuel Process. Technol. 91(9), 1113–1118 (2010)

    Article  CAS  Google Scholar 

  27. Ansah, E., Wang, L., Shahbazi, A.: Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components. Waste Manag. 56, 196–206 (2016)

    Article  CAS  PubMed  Google Scholar 

  28. Williams Paul, T., Horne Patrick, A.: The role of metal salts in the pyrolysis of biomass. Renew. Energy 4(1), 1–13 (1994)

    Article  Google Scholar 

  29. Sharma, S., Ghoshal, A.K.: Study of kinetics of co-pyrolysis of coal and waste LDPE blends under argon atmosphere. Fuel 89(12), 3943–3951 (2010)

    Article  CAS  Google Scholar 

  30. Zhou, L., Luo, T., Huang, Q.: Co-pyrolysis characteristics and kinetics of coal and plastic blends. Energy Convers. Manag. 50(3), 705–710 (2009)

    Article  CAS  Google Scholar 

  31. Zheng, X., Chen, C., Ying, Z., Wang, B., Chi, Y.: Py-GC/MS study on tar formation characteristics of MSW key component pyrolysis. Waste Biomass Valoriz. 8(2), 313–319 (2017)

    Article  CAS  Google Scholar 

  32. Dong, C., Zhang, Z., Lu, Q., Yang, Y.: Characteristics and mechanism study of analytical fast pyrolysis of poplar wood. Energy. Conv. Manag. 57, 49–59 (2012)

    Article  CAS  Google Scholar 

  33. Ding, K., Zhong, Z., Wang, J., Zhang, B., Fan, L., Liu, S., Wang, Y., Liu, Y., Zhong, D., Chen, P., Ruan, R.: Improving hydrocarbon yield from catalytic fast co-pyrolysis of hemicellulose and plastic in the dual-catalyst bed of CaO and HZSM-5. Bioresour. Technol. 261, 86–92 (2018)

    Article  CAS  PubMed  Google Scholar 

  34. Wang, D., Xiao, R., Zhang, H., He, G.: Comparison of catalytic pyrolysis of biomass with MCM-41 and CaO catalysts by using TGA–FTIR analysis. J. Anal. Appl. Pyrol. 89(2), 171–177 (2010)

    Article  CAS  Google Scholar 

  35. French, R., Czernik, S.: Catalytic pyrolysis of biomass for biofuels production. Fuel Process. Technol. 91(1), 25–32 (2009)

    Article  Google Scholar 

  36. Wang, X., Sheng, L., Yang, X.: Pyrolysis characteristics and pathways of protein, lipid and carbohydrate isolated from microalgae nannochloropsis sp. Bioresour. Technol. 229, 119–125 (2017)

    Article  CAS  PubMed  Google Scholar 

  37. Jan, P., Desmond, R., Scott Donald, S.: On the mechanism of the rapid pyrolysis of cellulose. J. Anal. Appl. Pyrol. 9(2), 121–137 (1986)

    Article  Google Scholar 

  38. Akhtar, J., Amin, N.S.: A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew. Sustain. Energy Rev. 16(7), 5101–5109 (2012)

    Article  CAS  Google Scholar 

  39. Li, J., Yan, R., Xiao, B., Wang, X., Yang, H.: Influence of temperature on the formation of oil from pyrolyzing palm oil wastes in a fixed bed reactor. Energy & Fuels 21(4), 2398–2407 (2007)

    Article  CAS  Google Scholar 

  40. Wang, S., Liang, T., Ru, B., Xi, G.: Mechanism of xylan pyrolysis by Py-GC/MS. Chem. Res. Chin. Univ. 29(4), 782–787 (2013)

    Article  Google Scholar 

  41. Chen, W., Yang, H., Chen, Y., Xia, M., Yang, Z., Wang, X., Chen, H.: Algae pyrolytic poly-generation: influence of component difference and temperature on products characteristics. Energy 131, 1–12 (2017)

    Article  CAS  Google Scholar 

  42. Schwab, A.W., Dykstra, G.J., Selke, E., Sorenson, S.C., Pryde, E.H.: Diesel fuel from thermal decomposition of soybean oil. J. Am. Oil Chem. Soc. 65(11), 1781–1786 (1988)

    Article  CAS  Google Scholar 

  43. Silva, J.O., Filho, G.R., Meireles, C.S., Ribeiro, S.D., Vieira, J.G., Silva, C.V., Daniel, A.C.: Thermal analysis and FTIR studies of sewage sludge produced in treatment plants. The case of sludge in the city of Uberlândia-MG, Brazil. Thermochim. Acta 528, 72–75 (2011)

    Article  Google Scholar 

  44. Yang, X., Zhang, J., Zhu, X.: Decomposition and calcination characteristics of calcium-enriched bio-oil. Energy & Fuels 22(4), 2598–2603 (2008)

    Article  CAS  Google Scholar 

  45. Nagashima, O., Sato, S., Takahashi, R., Sodesawa, T.: Ketonization of carboxylic acids over CeO2-based composite oxides. J. Mol. Catal. A: Chem. 227(1), 231–239 (2004)

    Google Scholar 

  46. Liu, Y., Li, Z., Wang, J., Zhu, P., Zhao, J., Zhang, C., Guo, Y., Jin, X.: Thermal degradation and pyrolysis behavior of aluminum alginate investigated by TG-FTIR-MS and Py-GC-MS. Polym. Degrad. Stab. 118, 59–68 (2015)

    Article  CAS  Google Scholar 

  47. Moldoveanu, S.C.: Analytical pyrolysis of proteins. Tech. Instrum. Anal. Chem. 20, 373–397 (1998)

    Article  Google Scholar 

  48. Shigeo, M., Nobutaka, K., Osamu, W., Sekio, I., Kunihiko, A., Masatoshi, M.: Detection of a carcinogen, 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine, in airborne particles and diesel-exhaust particles. Environ. Pollut. 80(3), 281–286 (1993)

    Article  Google Scholar 

  49. Maher, K.D., Bressler, D.C.: Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresour. Technol. 98(12), 2351–2368 (2007)

    Article  CAS  PubMed  Google Scholar 

  50. Carneiro, M.L.N.M., Gomes, M.S.P.: Energy, exergy, environmental and economic analysis of hybrid waste-to-energy plants. Energy. Conv. Manag. 179, 397–417 (2019)

    Article  Google Scholar 

  51. Luz, F.C., Rocha, M.H., Lora, E.E.S., Venturini, O.J., Andrade, R.V., Leme, M.M.V., Olmo, O.A.: Techno-economic analysis of municipal solid waste gasification for electricity generation in Brazil. Energy. Conv. Manag. 103, 321–337 (2015)

    Article  Google Scholar 

  52. Dong, J., Tang, Y., Nzihou, A., Chi, Y.: Key factors influencing the environmental performance of pyrolysis, gasification and incineration Waste-to-energy technologies. Energy. Conv. Manag. 196, 497–512 (2019)

    Article  CAS  Google Scholar 

  53. NIPPON STEEL ENGINEERING CO Ltd. Waste to Energy Facility (Shaft Type Gasification Melting Furnace). JASE-W Japanese Smart Energy Products & Technologies. https://www.jase-w.eccj.or.jp/technologies/pdf/electricity/E-20.pdf

  54. Tanigaki, N.: Proven Waste Gasification Technology-Recent operating conditions and measures for scale-up [J]. World Waste to Energy City Summit London (2016). http://worldwastetoenergy.com/wp-content/uploads/2016/05/NobuhiroTanigaki.pdf

  55. Knudsen, J.N., Jensen, P.A., Dam-Johansen, K.: Transformation and release to the gas phase of cl, K, and S during combustion of annual biomass. Energy Fuels 18(5), 1385–1399 (2004)

    Article  CAS  Google Scholar 

  56. Fatehi H, Costa M, Bai XS (2020) Numerical study on K/S/Cl release during devolatilization of pulverized biomass at high temperature. Proceedings of the Combustion Institute 38:3909–3917.

    Article  Google Scholar 

  57. Angelo, S.M., Aldrin, C.: Comparative analysis of existing waste-to-energy reference plants for municipal solid waste. Clean. Environ. Syst. 3, 100063 (2021)

    Article  Google Scholar 

  58. Aghbashlo, M., Hosseinzadeh-Bandbafha, H., Shahbeik, H., Tabatabaei, M.: The role of sustainability assessment tools in realizing bioenergy and bioproduct systems. Biofuel Res. J. 35, 1697–1706 (2022)

    Article  Google Scholar 

  59. Li, H., Chen, J., Zhang, W., Zhan, H., He, C., Yang, Z., Peng, H., Leng, L.: Machine-learning-aided thermochemical treatment of biomass: a review. Biofuel Res. J. 37, 1786–1809 (2023)

    Article  Google Scholar 

  60. Shahbeik, H., Rafiee, S., Shafizadeh, A., Jeddi, D., Jafary, T., Lam, S.S., Pan, J., Tabatabaei, M., Aghbashlo, M.: Characterizing sludge pyrolysis by machine learning: towards sustainable bioenergy production from wastes. Renew. Energy 199, 1078–1092 (2022)

    Article  Google Scholar 

  61. Mahari, W.A.W., Azwar, E., Foong, S.Y., Ahmed, A., Peng, W., Tabatabaei, M., Aghbashlo, M., Park, Y.K., Sonne, C., Lam, S.S.: Valorization of municipal wastes using co-pyrolysis for green energy production, energy security and environmental sustainability: a review. Chem. Eng. J. 121, 129749 (2021)

    Article  Google Scholar 

Download references

Funding

The authors gratefully acknowledge financial support from National Key Research and Development Project of China (2018YFC1901206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhang.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, T., Zhang, R. et al. Pyrolysis Characteristics of Anaerobic Biogas Solid Residue from Kitchen Waste. Waste Biomass Valor 15, 1141–1153 (2024). https://doi.org/10.1007/s12649-023-02232-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02232-2

Keywords

Navigation