Skip to main content
Log in

Effects of Different Concentrations of Leaf Residues of Ageratina adenophora on Seed Germination and Growth Behavior of Two Native Tree Species of Kumaun Himalaya, India

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This study was conducted to investigate growth inhibitory or stimulating effects of leaf residues derived from a globally recognized invasive alien weed Ageratina adenophora on two dominant tree species viz. Banj oak (Quercus oblongata) and Chir pine (Pinus roxburghii) of Kumaun Himalaya, India. Leaves of different life cycle stages (fresh leaves and dry-senesced leaves) were cumulated from the A. adenophora population flourishing in the vicinity of D.S.B. Campus, Nainital and compost was prepared from collected fresh leaves following the standard methods. Fresh, dry-senesced and composted leaf materials were added separately to 1 kg of soil pots in different concentrations, i.e. C1 (10 g leaves/kg of soil), C2 (20 g/kg), C3 (40 g/kg) and C4 (80 g/kg) representing the variation in the degree of invasion while control (C0) without leaf residues was used representing un-invaded regions to compare the results. Seed germination was recorded on daily basis and seedling growth parameters were recorded in first month, sixth month and twelfth month of time durations. The entire experiment was performed for 1 year of time duration excluding composted period. Our results showed that both the tree species responded differently to different leaf treatments. Fresh and composted leaf treatments showed positive effects on Pine, while Oak responded positively only to composted leaves in concentration dependent manner. Dry-senesced leaf treatments inhibited all the studied traits of both the tested species and were highly suppressive among all the leaf residue types. As the seed germination is the foremost and most crucial phase in population recruitment of any region, this weed suppressed germination parameters of both the native trees. The negative response of Pine and Oak to A. adenophora leaf residues indicated the inhibitory activity of this weed that enabled A. adenophora to form monospecies stands in these forests. Therefore, proper management, and utilization of A. adenophora in the form of compost for growth of other species could help in eradication of this species and mantainance of dominant forest systems of Kumaun Himalayan region.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

S:

Species

T:

Treatment

C:

Concentration

CLT:

Composted leaf treatment

FLT:

Fresh leaf treatment

DLT:

Dry leaf treatment

RL:

Root length

SL:

Shoot length

TPL:

Total plant length

SVI:

Seed vigor index

RB:

Root biomass

SB:

Shoot biomass

TPB:

Total plant biomass

RMC:

Relative moisture content

R:S:

Root:shoot ratio

FLT:

Fresh leaf treatment

DLT:

Dry leaf treatment

CLT:

Composted leaf treatment

References

  1. Ma, J., Feng, X., Yang, X., Cao, Y., Zhao, W., Sun, L.: The leaf extract of crofton weed (Eupatorium adenophorum) inhibits primary root growth by inducing cell death in maize root border cells. Plant Divers. 42(3), 174–180 (2020). https://doi.org/10.1016/j.pld.2020.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wu, B.D., Zhang, H.S., Jiang, K., Zhou, J.W., Wang, C.Y.: Erigeron canadensis affects the taxonomic and functional diversity of plant communities in two climate zones in the North of China. Ecol. Res. 34, 535–547 (2019). https://doi.org/10.1111/1440-1703.12024

    Article  Google Scholar 

  3. Khatri, K., Bargali, K., Bargali, S.S., Negi, B.: Effects of leaf residues from Ageratina adenophora on germination, growth and productivity of two rabi crops. Acta Ecol. Sin. 43(02), 363–374 (2023). https://doi.org/10.1016/j.chnaes.2022.05.001

    Article  Google Scholar 

  4. Xu, W., Xu, J., Tao, B., Yuan, W.H., Zhang, J.L.: Preliminary study on allelopathic effect of the invasive species Flaveria bidentis (L.) Kuntze. J. Agric. Univ. Hebei 6(30), 63–67 (2007)

    CAS  Google Scholar 

  5. Pant, H.M., Sharma, N.: Inventory of some exotic cultivated tree species of Doon valley and their ethnobotanical uses. J. Med. Plant Res. 4, 2144–2147 (2010)

    Google Scholar 

  6. Vila, M., Espinar, J.L., Hejda, M., Hulme, P.E., Jarosik, V., Maron, J.L., Pergl, J., Schaffner, U., Sun, Y., Pysek, P.: Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14, 702–708 (2011)

    Article  PubMed  Google Scholar 

  7. Sinkkonen, A., Laitinen, O.H., Leppiniemi, J., Vauramo, S., Hytonen, V.P., Setala, H.: Positive association between biotin and the abundance of root-feeding nematodes. Soil Biol. Biochem. 73, 93–95 (2014). https://doi.org/10.1016/j.soilbio.2014.02.002

    Article  CAS  Google Scholar 

  8. Ormsby, M., Brenton-Rule, E.: A review of global instruments to combat invasive alien species in forestry. Biol. Invasions 19(11), 3355–3364 (2017). https://doi.org/10.1007/s10530-017-1426-0

    Article  Google Scholar 

  9. Pathak, R., Negi, V.S., Rawal, R.S., Bhatt, I.D.: Alien plant invasion in the Indian Himalayan Region: state of knowledge and research priorities. Biodivers. Conserv. 28, 3073–3102 (2019). https://doi.org/10.1007/s10531-019-01829-1

    Article  Google Scholar 

  10. Khatri, K., Negi, B., Bargali, K., Bargali, S.S.: Effects of elevation and habitat on leaf and reproductive traits of Ageratina adenophora (Sprengel) King & Robinson. S. Afr. J. Bot. 147, 859–870 (2022). https://doi.org/10.1007/s42535-022-00353-y

    Article  Google Scholar 

  11. Kalisz, S., Kivlin, S.N., Bialic-Murphy, L.: Allelopathy is pervasive in invasive plants. Biol. Invasions 23, 367–371 (2021). https://doi.org/10.1007/s10530-020-02383-6

    Article  Google Scholar 

  12. Callaway, R.M., Ridenour, W.M.: Novel weapons: invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2(8), 436–443 (2004). https://doi.org/10.1890/1540-9295(2004)002[0436:NWISAT]2.0.CO;2

    Article  Google Scholar 

  13. Carvalho, M.S.S., Andrade-Vieira, L.F., dos Santos, F.E., Correa, F.F., das Graçascardoso, M., Vilela, L.R.: Allelopathic potential and phytochemical screening of ethanolic extracts from five species of Amaranthus spp. in the plant model Lactuca sativa. Sci. Hortic. 245, 90–98 (2019). https://doi.org/10.1016/j.scienta.2018.10.001

    Article  CAS  Google Scholar 

  14. Green, S.J., Grosholz, E.D.: Functional eradication as a framework for invasive species control. Front. Ecol. Environ. 19(2), 98–107 (2021). https://doi.org/10.1002/fee.2277

    Article  Google Scholar 

  15. Poudel, A.S., Jha, P.K., Shrestha, B.B., Muniappan, R.: Biology and management of the invasive weed Ageratina adenophora (Asteraceae): current state of knowledge and future research needs. Weed Res. 59, 79–92 (2019). https://doi.org/10.1111/wre.12351

    Article  Google Scholar 

  16. Khatri, K., Negi, B., Bargali, K., Bargali, S.S.: Trait variability in co-occurring invasive and native plant species in road side population of Kumaun Himalaya. Braz. J. Bot. 45, 1099–1110 (2022). https://doi.org/10.1007/s40415-022-00827-y

    Article  Google Scholar 

  17. Jiao, Y., Li, Y., Yuan, L., Huang, J.: Allelopathy of uncomposted and composted invasive aster (Ageratina adenophora) on ryegrass. J. Hazard. Mater. 402, 123727 (2020). https://doi.org/10.1016/j.jhazmat.2020.123727

    Article  CAS  PubMed  Google Scholar 

  18. Bhardwaj, S., Kapoor, K.S., Singh, H.P.: Studies on allelopathic effects of Ageratina adenophora sprengel (King and Robinson) on some weed plants growing in forest ecosystem. Int. J. Theor. Appl. Sci. 6(2), 1–6 (2014)

    Google Scholar 

  19. Tripathi, R.S., Singh, R.S., Rai, J.P.N.: Allelopathic potential of Eupatorium adenophorum, a dominant ruderal weed of Meghalaya. Proc. Natl. Acad. Sci. India B 47, 458–462 (1981)

    Google Scholar 

  20. Zheng, L., Feng, Y.L.: Allelopathic effects of Eupatorium adenophorum Spreng. on seed germination and seedling growth in ten herbaceous species. Acta Ecol. Sin. 25(10), 2782–2787 (2005)

    CAS  Google Scholar 

  21. Li, Y., Xu, H., Shi, L., Li, Z.: Allelopathic effects of Eupatorium adenophorum on five species of the family Gesneriaceae. Biodivers. Sci. 15(5), 486–491 (2007). https://doi.org/10.1360/biodiv.060213

    Article  Google Scholar 

  22. Zhong, S., Duan, X., Kui, J.: Allelopathy of Eupatorium adenophorum on germination and seedling growth of 16 pastures. Acta Prataculturae Sin. 16(6), 81–87 (2007)

    CAS  Google Scholar 

  23. Yan, Q., Liu, W., Li, H., Wan, F.: Effects of Ageratina adenophora-invaded soil and its extract on upland rice Oryza sativa seed germination and seedling growth. Chin. J. Ecol. 28, 879 (2009)

    Google Scholar 

  24. Zhao, X., Zheng, G.W., Niu, X.M., Li, W.Q., Wang, F.S., Li, S.H.: Terpenes from Eupatorium adenophorum and their allelopathic effects on Arabidopsis seeds germination. J. Agric. Food Chem. 57(2), 478–482 (2009). https://doi.org/10.1021/jf803023x

    Article  CAS  PubMed  Google Scholar 

  25. Sun, Y., Liu, J., Meng, J., Ou, G.: Allelopathic effect of Eupatorium adenophorum on seed germination of six local plants in Guizhou. Guizhou Agric. Sci. 3, 162–165 (2010)

    Google Scholar 

  26. Cao, Z., Wang, X., Tu, J.: Allelopathic effect of aqueous extracts of Eupatorium adenophorum Spreng. by different treatment methods on seed germination of Pinus yunanensis Franch. Seed 30(8), 46–49 (2011)

    Google Scholar 

  27. Ma, J., Xing, G., Yang, W., Ma, L., Gao, M., Wang, Y., Han, Y.: Inhibitory effects of leachate from Eupatorium adenophorum on germination and growth of Amaranthus retroflexus and Chenopodium glaucum. Acta Ecol. Sin. 32, 50–56 (2012). https://doi.org/10.1016/j.chnaes.2011.12.004

    Article  Google Scholar 

  28. Karmakar, N.C., Hazra, A.: First evidences for induced pseudo-viviparous germination in Ageratina adenophora (Crofton weed), a common alien weed of Darjeeling Himalaya, India. Plant Sci. Today 3, 249–257 (2016). https://doi.org/10.14719/pst.2016.3.3.234

    Article  Google Scholar 

  29. Yang, G., Guo, J., Zhu, X., Shao, H., Gao, T.: Soil chemicals from croftonweed (Ageratina adenophora) are phytotoxic. Weed Sci. 64, 223–230 (2016). https://doi.org/10.1614/WS-D-15-00115.1

    Article  Google Scholar 

  30. Thapa, L.B., Kaewchumnong, K., Sinkkonen, A., Sridith, K.: “Soaked in rainwater” effect of Ageratina adenophora on seedling growth and development of native tree species in Nepal. Flora 263, 151554 (2020). https://doi.org/10.1016/j.flora.2020.151554

    Article  Google Scholar 

  31. Khatri, K., Negi, B., Bargali, K., Bargali, S.S.: Phenotypic variation in morphology and associated functional traits in Ageratina adenophora along an altitudinal gradient in Kumaun Himalaya, India. Biologia 78, 1333–1347 (2023). https://doi.org/10.1007/s11756-022-01254-w

    Article  Google Scholar 

  32. Wang, R., Kang, X., Quan, G., Zhang, J.: Influence of Lantana camara on soil II. Effects of Lantana camara leaf litter on plants and soil properties. Allelopathy J. 35, 207–216 (2015)

    Google Scholar 

  33. Lalita, Kumar, A., Amist, N.: Allelopathic effects of Parthenium hysterophorus L. on the growth and yield of Vigna radiata L. Allelopathy J. 50, 153–171 (2020). https://doi.org/10.26651/allelo.j/2020-52-2-1322

    Article  Google Scholar 

  34. Funk, J.L.: Differences in plasticity between invasive and native plants from a low resource environment. J. Ecol. 96(6), 1162–1173 (2008)

    Article  Google Scholar 

  35. Sumithra, K., Jutur, P.P., Carmel, B.D., Reddy, A.R.: Salinity-induced changes in two cultivars of Vigna radiata: responses of antioxidative and proline metabolism. Plant Growth Regul. 50(1), 11–22 (2006). https://doi.org/10.1007/s10725-006-9121-7

    Article  CAS  Google Scholar 

  36. Kumar, B., Verma, S.K., Ram, G., Singh, H.P.: Temperature relations for seed germination potential and seedling vigor in Palmarosa (Cymbopogon martinii). J. Crop Improv. 26, 791–801 (2012). https://doi.org/10.1080/15427528.2012.689799

    Article  Google Scholar 

  37. Iralu, V., Upadhaya, K.: Relative growth rate, biomass partitioning and nutrient allocation in seedlings of two threatened trees grown under different light conditions. Acta Ecol. Sin. 38(6), 450–459 (2018)

    Article  Google Scholar 

  38. Darji, T.B., Adhikari, B., Pathak, S., Neupane, S., Thapa, L.B., Bhatt, T.D., Pant, R.R., Pant, G., Pal, K.B., Bishwakarma, K.: Phytotoxic effects of invasive Ageratina adenophora on two native subtropical shrubs in Nepal. Sci. Rep. 11(1), 1–9 (2021). https://doi.org/10.1038/s41598-021-92791-y

    Article  CAS  Google Scholar 

  39. Lu, Y.J., Wang, Y.F., Wu, B.D., Wang, S., Wei, M., Du, D.L., Wang, C.Y.: Allelopathy of three compositae invasive alien species on indigenous Lactuca sativa L. enhanced under Cu and Pb pollution. Sci. Hortic. 267, 109323 (2020). https://doi.org/10.1016/j.scienta.2020.109323

    Article  CAS  Google Scholar 

  40. Wei, M., Wang, S., Wu, B.D., Cheng, H.Y., Wang, C.Y.: Heavy metal pollution improves allelopathic effects of Canada goldenrod on lettuce germination. Plant Biol. 22, 832–838 (2020). https://doi.org/10.1111/plb.13126

    Article  CAS  PubMed  Google Scholar 

  41. Weyerstahl, P., Marschall, H., Seelmann, I., Kaul, V.K.: Constituents of the flower essential oil of Ageratina adenophora (Spreng.) King & Rob. from India. Flavour Fragr. J. 12, 387–396 (1997). https://doi.org/10.1002/(SICI)1099-1026(199711/12)12:6%3C387::AID-FFJ677%3E3.0.CO;2-F

    Article  CAS  Google Scholar 

  42. Padalia, R.C., Bisht, D.S., Joshi, S.C., Mathela, C.S.: Chemical composition of the essential oil from Eupatorium adenophorum Spreng. J. Essent. Oil Res. 21(6), 522–524 (2009). https://doi.org/10.1080/10412905.2009.9700234

    Article  CAS  Google Scholar 

  43. Kurade, N.P., Jaitak, V., Kaul, V.K., Sharma, O.P.: Chemical composition and antibacterial activity of essential oils of Lantana camara, Ageratum houstonianum and Eupatorium adenophorum. Pharm. Biol. 48, 539–544 (2010). https://doi.org/10.3109/13880200903193336

    Article  CAS  PubMed  Google Scholar 

  44. Kundu, A., Saha, S., Walia, S., Shakil, N.A., Kumar, J., Annapurna, K.: Cadinene sesquiterpenes from Eupatorium adenophorum and their antifungal activity. J. Environ. Sci. Health B 48, 516–522 (2013). https://doi.org/10.1080/03601234.2013.761921

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, M., Liu, W.X., Zheng, M.F., Xu, Q.L., Wan, F.H., Wang, J., Lei, T., Zhou, Z.Y., Tan, J.W.: Bioactive quinic acid derivatives from Ageratina adenophora. Molecules 18(11), 14096–14104 (2013). https://doi.org/10.3390/molecules181114096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou, Z.Y., Liu, W.X., Pei, G., Ren, H., Wang, J., Xu, Q.L., Xie, H.H., Wan, F.H., Tan, J.W.: Phenolics from Ageratina adenophora roots and their phytotoxic effects on Arabidopsis thaliana seed germination and seedling growth. J. Agric. Food Chem. 61, 11792–11799 (2013). https://doi.org/10.1021/jf400876j

    Article  CAS  PubMed  Google Scholar 

  47. Kumar, M., Garkoti, S.C.: Allelopathy effects of invasive alien Ageratina adenophora on native shrub species of chir Pine forest in the central Himalaya, India. J. For. Res. 27, 53–62 (2022). https://doi.org/10.1080/13416979.2021.2002505

    Article  CAS  Google Scholar 

  48. Taylor, B.R.: Air-drying depresses rates of leaf litter decomposition. Soil Biol. Biochem. 30(3), 403–412 (1998). https://doi.org/10.1016/S0038-0717(97)00126-0

    Article  CAS  Google Scholar 

  49. Song, Q.S., Fu, Y., Tang, J.W., Feng, Z.L., Yang, C.R.: Allelopathic potential of Eupatorium adenophorum. Chin. J. Plant Ecol. 24(3), 362–365 (2000)

    Google Scholar 

  50. Inderjit, Evans, H., Crocoll, C., Bajpai, D., Kaur, R., Feng, Y.L., Silva, C., Carreon, J.T., Valiente-Banuet, A., Gershenzon, J., Callaway, R.M.: Volatile chemicals from leaf litter are associated with invasiveness of a Neotropical weed in Asia. Ecology 92, 316–324 (2011). https://doi.org/10.1890/10-0400.1

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, F., Guo, J., Chen, F., Liu, W., Wan, F.: Identification of volatile compounds released by leaves of the invasive plant croftonweed (Ageratina adenophora, Compositae), and their inhibition of rice seedling growth. Weed Sci. 60(2), 205–211 (2012). https://doi.org/10.1614/WS-D-11-00156.1

    Article  CAS  Google Scholar 

  52. Awasthi, P., Bargali, K., Bargali, S.S., Khatri, K.K.: Nutrient return through decomposing Coriaria nepalensis litter in degraded hills of Kumaun Himalaya. Front. For. Glob. Change 5, 1008939 (2022). https://doi.org/10.3389/ffgc.2022.1008939

    Article  Google Scholar 

  53. Zheng, G., Zhao, X., Zhang, F., Luo, S.L.S., Li, W.: o-Coumaric acid from invasive Eupatorium adenophorum is a potent phytotoxin. Chemoecology 22, 131–138 (2012). https://doi.org/10.1007/s00049-012-0105-y

    Article  CAS  Google Scholar 

  54. Thapa, L.B., Kaewchumnong, K., Sinkkonen, A., Sridith, K.J.: Plant invasiveness and target plant density: high densities of native Schima wallichii seedlings reduce negative effects of invasive Ageratina adenophora. Weed Res. 57(7), 72–80 (2017)

    Article  CAS  Google Scholar 

  55. Rawat, L.S., Maikhuri, R.K., Bahuguna, Y.M., Maletha, A., Phondani, P.C., Jha, N.K., Pharswan, D.S.: Interference of Eupatorium adenophorum (Spr.) and its allelopathic effect on growth and yield attributes of traditional food crops in Indian Himalayan Region. Ecol. Res. 34(5), 587–599 (2019). https://doi.org/10.1111/1440-1703.12042

    Article  CAS  Google Scholar 

  56. Nishida, N., Tamtosu, S., Nagata, N., Saito, C., Sakai, A.: Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J. Chem. Ecol. 31, 1187–1203 (2005). https://doi.org/10.1007/s10886-005-4256-y

    Article  CAS  PubMed  Google Scholar 

  57. Das, M.B.B., Acharya, B.D., Saquib, M., Chettri, M.K.: Effect of aqueous extract and compost of invasive weed Ageratina adenophora on seed germination and seedling growth of some crops and weeds. J. Biodivers. Conserv. Bioresource. Manage. 4, 11–20 (2018). https://doi.org/10.3329/jbcbm.v4i2.39843

    Article  CAS  Google Scholar 

  58. Krishna, M.P., Mohan, M.: Litter decomposition in forest ecosystems: a review. Energ. Ecol. Environ. 2, 236–249 (2017). https://doi.org/10.1007/s40974-017-0064-9

    Article  Google Scholar 

  59. Bezkorovainaya, I.N.: The formation of soil invertebrate communities in the Siberian aforestation experiment. In: Binkley, D., Menyailo, O. (eds.) Tree Species Effects on Soils: Implications for Global Change NATO Science Series IV: Earth and Environmental Sciences, pp. 307–316. Springer, Dordrecht (2005). https://doi.org/10.1007/1-4020-3447-4_19

    Chapter  Google Scholar 

  60. Xu, R.G., Weng, J.H., Hu, L.W., Peng, G.N., Ren, Z.H., Deng, J.L., Jia, Y., Wang, C.M., He, H.X., Hu, Y.C.: Anti-NDV activity of 9-oxo10,11-dehydroageraphorone extracted from Eupatorium adenophorum Spreng in vitro. Nat. Prod. Res. 32, 2244–2247 (2018). https://doi.org/10.1080/14786419.2017.1371158

    Article  CAS  PubMed  Google Scholar 

  61. Jiao, Y., Jia, R., Sun, Y., Yang, G., Li, Y., Huang, J., Yuan, L.: In situ aerobic composting eliminates the toxicity of Ageratina adenophora to maize and converts it into a plant-and soil-friendly organic fertilizer. J. Hazard. Mater. 410, 124554 (2021). https://doi.org/10.1016/j.jhazmat.2020.124554

    Article  CAS  PubMed  Google Scholar 

  62. Wei, H.W., Wang, L.H., Hassan, M., Xie, B.: Succession of the functional microbial communities and the metabolic functions in maize straw composting process. Bioresour. Technol. 256, 333–341 (2018). https://doi.org/10.1016/j.biortech.2018.02.050

    Article  CAS  PubMed  Google Scholar 

  63. Głąb, T., Zabinski, A., Sadowska, U., Gondek, K., Kopec, M., Mierzwa-Hersztek, M., Tabor, S., Stanek-Tarkowska, J.: Fertilization effects of compost produced from maize, sewage sludge and biochar on soil water retention and chemical properties. Soil Tillage Res. 197, 104493 (2020). https://doi.org/10.1016/j.still.2019.104493

    Article  Google Scholar 

  64. Zheng, Y.L., Feng, Y.L., Lei, Y.B., Liao, Z.Y.: Comparisons of plastic responses to irradiance and physiological traits by invasive Eupatorium adenophorum and its native congeners. J. Plant Physiol. 169, 884–891 (2012). https://doi.org/10.1016/j.jplph.2012.02.011

    Article  CAS  PubMed  Google Scholar 

  65. Singh, H.P., Batish, D.R., Kohli, R.K., Saxena, D.B., Arora, V.: Effect of parthenin—a sesquiterpene lactone from Parthenium hysterophorus—on early growth and physiology of Ageratum conyzoides. J. Chem. Ecol. 28(11), 2169–2179 (2002). https://doi.org/10.1023/A:1021089013754

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank the Head of Botany department, D.S.B. Campus, Kumaun University, Nainital for granting the research permission, providing all the laboratory facilities and kind support to carry out the research. Department of Science & Technology, New Delhi, India (File No. DST/SERB/CRG/2019/004139) is highly acknowledged for finanicially supporting this research. Authors are highly thankful for the constructive comments and suggestions made by the Editor and Reviewers which improved the quality of our manuscript.

Funding

This research was funded by Department of Science & Technology (DST)—Science & Engineering Research Board (SERB), New Delhi (File No.: DST-SERB/CRG/2019/004139), Government of India.

Author information

Authors and Affiliations

Authors

Contributions

KK: collected and analysed the data and prepared the first draft. BN: helped in data collection. KB and SSB: have designed and guided the research, reviewed and modified the manuscript.

Corresponding author

Correspondence to Surendra Singh Bargali.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatri, K., Negi, B., Bargali, K. et al. Effects of Different Concentrations of Leaf Residues of Ageratina adenophora on Seed Germination and Growth Behavior of Two Native Tree Species of Kumaun Himalaya, India. Waste Biomass Valor 15, 923–943 (2024). https://doi.org/10.1007/s12649-023-02213-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02213-5

Keywords

Navigation