Skip to main content
Log in

Chemical Composition and In Vitro Biological Activity of Angelica Root and Hop Strobile Essential Oils and Hydrolates

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The purpose of this study was to obtain additional value of hydrolates (HYs), by-products during essential oil distillation. Chemical compositions of angelica and hop hydrolates were determined and compared with the corresponding essential oils, and their biological potential tested. Steam distilled essential oils and hydrolates were analyzed by GC-MS, and their biological potential was tested for antioxidant (DPPH, ABTS and reduction power) and antimicrobial activities (against nine bacteria and fungi). Hydrolates were additionally tested for allelopathic activity (on corn and redroot pigweed). The investigated essential oils have totally different volatile profiles and aromas in comparison to hydrolates. The most dominant constituents in the angelica essential oil were limonene, β-phellandrene, α-pinene, α-phellandrene and δ-3-carene, while in the hydrolate it was trans-verbenol. In the hop essential oil the most dominant constituents were myrcene and α-humulene, while in the hydrolate isovaleric acid and linalool were dominant. Angelica essential oil showed higher antioxidant activity in comparison with hop, while hydrolates displayed significantly lower antioxidant activity. Low antimicrobial potential of both essential oils was observed in the case of Enterococcus faecalis, Escherichia coli, Saccharomyces cerevisiae and Candida albicans. Antimicrobial activity was not detected in neither of the two hydrolates. In terms of allelopathic activity, hydrolates showed a dose-dependent decreasing activity on germination and seedling growth of corn and redroot pigweed. Angelica and hop essential oils are mainly used in food, cosmetic and pharmaceutical industries because of their aroma. Hydrolates, as by-products, possess potential for application in agriculture as natural herbicides.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data can be made available upon reasonable request.

References

  1. Teixidor-Toneu, I., Kool, A., Greenhill, S.J., Kjesrud, K., Sandstedt, J.J., Manzanilla, V., Jordan, F.M.: Historical, archaeological and linguistic evidence test the phylogenetic inference of viking-age plant use. Phil Trans. R Soc. B. 376, 20200086 (2021). https://doi.org/10.1098/rstb.2020.0086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Petrović, M., Vukosavljević, P., Ðurović, S., Antić, M., Gorjanovic, S.: New herbal bitter liqueur with high antioxidant activity and lower sugar content: Innovative approach to liqueurs formulations. J. Food Sci. Technol. 56(10), 4465–4473 (2019). https://doi.org/10.1007/s13197-019-03949-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Veljović, S., Tomić, N., Belović, M., Nikićević, N., Vukosavljević, P., Nikšić, M., Tešević, V.: Volatile composition, colour, and sensory quality of spirit-based beverages enriched with medicinal fungus Ganoderma lucidum and herbal extract. Food Technol. Biotechnol. 57(3), 408–417 (2019). https://doi.org/10.17113/ftb.57.03.19.6106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. El-Kased, R.F., El-Kersh, D.M.: GC–MS profiling of naturally extracted essential oils: Antimicrobial and beverage preservative actions. Life. 12, 1587 (2022). https://doi.org/10.3390/life12101587

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  5. Machado, C.A., Oliveira, F.O., de Andrade, M.A., Hodel, K.V.S., Lepikson, H., Machado, B.A.S.: Steam distillation for essential oil extraction: An evaluation of technological advances based on an analysis of patent documents. Sustainability. 14, 7119 (2022). https://doi.org/10.3390/su14127119

    Article  CAS  Google Scholar 

  6. Wilson, L.: Spices and Flavoring Crops: Tubers and Roots. In: Caballero, B., Finglas, P., Toldra, F. (eds.) Encyclopedia of Food and Health, pp. 93–97. Elsevier, Amsterdam (2016). https://doi.org/10.1016/b978-0-12-384947-2.00781-9

    Chapter  Google Scholar 

  7. Aćimović, M., Rat, M., Pezo, L., Lončar, B., Pezo, M., Miljković, A., Lazarević, J.: Biological and chemical diversity of Angelica archangelica L.—case study of essential oil and its biological activity. Agronomy. 12(7), 1570 (2022). https://doi.org/10.3390/agronomy12071570

    Article  CAS  Google Scholar 

  8. Kaur, A., Bhatti, R.: Understanding the phytochemistry and molecular insights to the pharmacology of Angelica archangelica L. (garden angelica) and its bioactive components. Phytother. Res 35(11), 5961–5979 (2021). https://doi.org/10.1002/ptr.7206

    Article  CAS  PubMed  Google Scholar 

  9. Topal, M., Sarıkaya, B.O., Topa, F.: Determination of Angelica archangelica’s antioxidant capacity and mineral content. Chem. Select. 6, 7976–7979 (2021). https://doi.org/10.1002/slct.20210228

    Article  CAS  Google Scholar 

  10. Aćimović, M., Pavlović, S., Varga, A., Filipović, V., Cvetković, M., Stanković, J., Čabarkapa, I.: Chemical composition and antibacterial activity of Angelica archangelica root essential oil. Nat. Prod. Commun. 12(2), 205–206 (2017)

    PubMed  Google Scholar 

  11. Fraternale, D., Teodori, L., Rudov, A., Prattichizzo, F., Olivieri, F., Guidarelli, A., Albertini, M.C.: The in vitro activity of Angelica archangelica L. essential oil on inflammation. J. Med. Food. 21(12), 1238–1243 (2018). https://doi.org/10.1089/jmf.2018.0017

    Article  CAS  PubMed  Google Scholar 

  12. Sigurdsson, S., Ögmundsdottir, H.M., Hallgrimsson, J., Gudbjarnason, S.: Antitumour activity of Angelica archangelica leaf extract. In Vivo. 19, 191–194 (2005)

    PubMed  Google Scholar 

  13. Kumar, D., Bhat, Z.A., Shah, M.Y.: Anti-anxiety activity of successive extracts of Angelica archangelica linn. On the elevated t-maze and forced swimming tests in rats. J. Tradit Chin. Med. 32(3), 423–429 (2012). https://doi.org/10.1016/S0254-6272(13)60049-7

    Article  PubMed  Google Scholar 

  14. Elgohary, A.A., Shafaa, M.W., Raafat, B.M., Rizk, R.A., Metwally, F.G., Saleh, A.M.: Prophylactic effect of Angelica archangelica against acute lead toxicity in albino rabbits. Romanian J. Biophys. 19(4), 259–275 (2009)

    Google Scholar 

  15. Wedge, D.E., Klun, J.A., Tabanca, N., Demirci, B., Ozek, T., Baser, K.H., Liu, Z., Zhang, S., Cantrell, C.L., Zhang, J.: Bioactivity-guided fractionation and GC/MS fingerprinting of Angelica sinensis and Angelica archangelica root components for antifungal and mosquito deterrent activity. J. Agric. Food Chem. 57(2), 464–470 (2009). https://doi.org/10.1021/jf802820d

    Article  CAS  PubMed  Google Scholar 

  16. Wszelaki, N., Paradowska, K., Jamróz, M.K., Granica, S., Kiss, A.K.: Bioactivity-guided fractionation for the butyrylcholinesterase inhibitory activity of furanocoumarins from Angelica archangelica L. roots and fruits. J. Agric. Food Chem. 59(17), 9186–9193 (2011). https://doi.org/10.1021/jf201971s

    Article  CAS  PubMed  Google Scholar 

  17. Surburg, H., Panten, J.: Natural raw materials in the Flavor and Fragrance Industry. In: Surburg, H., Panten, J. (eds.) Common fragrance and flavor materials: preparation, properties and uses, pp. 193–264. Wiley, Verlag (2016). https://doi.org/10.1002/9783527693153.ch3

    Chapter  Google Scholar 

  18. Viesti, V.D., Carnevale, G., Zavatti, M., Benelli, A., Zanoli, P.: Increased sexual motivation in female rats treated with Humulus lupulus L. extract. J. Ethnopharmacol. 134, 514–517 (2011). https://doi.org/10.1016/j.jep.2010.12.040

    Article  PubMed  Google Scholar 

  19. Rossini, F., Virga, G., Loreti, P., Iacuzzi, N., Ruggeri, R., Provenzano, M.E.: Hops (Humulus lupulus L.) as a novel multipurpose crop for the Mediterranean region of Europe: Challenges and opportunities of their cultivation. Agriculture. 11, 484 (2021). https://doi.org/10.3390/agriculture11060484

    Article  CAS  Google Scholar 

  20. Pereira, O.R., Santos, G., Sousa, M.J.: Hop by-products: Pharmacological activities and potential application as cosmetics. Cosmetics. 9, 139 (2022). https://doi.org/10.3390/cosmetics9060139

    Article  CAS  Google Scholar 

  21. Hurth, Z., Faber, M.L., Gendrisch, F., Holzer, M., Haarhaus, B., Cawelius, A., Schwabe, K., Schempp, C.M., Wölfle, U.: The anti-inflammatory effect of Humulus lupulus extract in vivo depends on the galenic system of the topical formulation. Pharmaceuticals. 15, 350 (2022). https://doi.org/10.3390/ph15030350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zanoli, P., Zavatti, M.: Pharmacognostic and pharmacological profile of Humulus lupulus L. J. Ethnopharmacol. 116, 383–396 (2008). https://doi.org/10.1016/j.jep.2008.01.011

    Article  CAS  PubMed  Google Scholar 

  23. Liu, Y., Gu, X.H., Tang, J., Liu, K.: Antioxidant activities of hops (Humulus Lupulus) and their products. J. Am. Soc. Brew. Chem. 65(2), 116–121 (2007). https://doi.org/10.1094/ASBCJ-2007-0211-01

    Article  CAS  Google Scholar 

  24. Arsene, A.L., Rodino, S., Butu, A., Petrache, P., Iordache, O., Butu, M.: Study on antimicrobial and antioxidant activity and phenolic content of ethanolic extract of Humulus lupulus. Farmacia. 63(6), 851–857 (2015)

    CAS  Google Scholar 

  25. Ponticelli, M., Russo, D., Faraone, I., Sinisgalli, C., Labanca, F., Lela, L., Milella, L.: The promising ability of Humulus lupulus L. iso-α-acids vs. diabetes, inflammation, and metabolic syndrome: a systematic review. Molecules 26, 954 (2021). https://doi.org/10.3390/molecules26040954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bland, J.S., Minich, D., Lerman, R., Darland, G., Lamb, J., Tripp, M., Grayson, N.: Isohumulones from hops (Humulus lupulus) and their potential role in medical nutrition therapy. PharmaNutrition. 3, 46–52 (2015). https://doi.org/10.1016/j.phanu.2015.03.001

    Article  CAS  Google Scholar 

  27. Franco, L., Sánchez, C., Bravo, R., Rodriguez, A., Barriga, C., Juánez, J.: The sedative effects of hops (Humulus lupulus), a component of beer, on the activity/rest rhythm. Hung. Acta Physiol. 99(2), 133–139 (2012)

    Article  CAS  Google Scholar 

  28. Önder, F.C., Ay, M., Türkoğlu, S.A., Köçkar, F.T., Çelik, A.: Antiproliferative activity of Humulus lupulus extracts on human hepatoma (Hep3B), colon (HT-29) cancer cells and proteases, tyrosinase, β-lactamase enzyme inhibition studies. J. Enzyme Inhib. Med. Chem. 31(1), 90–98 (2016)

    Article  Google Scholar 

  29. Girisa, S., Saikia, Q., Bordoloi, D., Banik, K., Monisha, J., Daimary, U.D., Verma, E., Ahn, K.S., Kunnumakkara, A.B.: Xanthohumol from hop: Hope for cancer prevention and treatment. IUBMB Life. 73, 1016–1044 (2021). https://doi.org/10.1002/iub.2522

    Article  CAS  PubMed  Google Scholar 

  30. Stevens, J.F., Miranda, C.L., Buhler, D.R., Deinzer, M.L.: Chemistry and biology of hop flavonoids. J. Am. Soc. Brew. Chem. 56(4), 136–145 (1998). https://doi.org/10.1094/asbcj-56-0136

    Article  CAS  Google Scholar 

  31. Ocvirk, M., Grdadolnik, J., Košir, I.J.: Determination of the botanical origin of hops (Humulus lupulus L.) using different analytical techniques in combination with statistical methods. J. Inst. Brew. 122, 452–461 (2016). https://doi.org/10.1002/jib.343

    Article  CAS  Google Scholar 

  32. Rutnik, K., Ocvirk, M., Košir, I.J.: Changes in hop (Humulus lupulus L.) oil content and composition during long-term storage under different conditions. Foods. 11, 3089 (2022). https://doi.org/10.3390/foods11193089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nezi, P., Cicaloni, V., Tinti, L., Salvini, L., Iannone, M., Vitalini, S., Garzoli, S.: Metabolomic and proteomic profile of dried hop inflorescences (Humulus lupulus L. cv. Chinook and cv. Cascade) by SPME-GC-MS and UPLC-MS-MS. Separations. 9, 204 (2022). https://doi.org/10.3390/separations9080204

    Article  CAS  Google Scholar 

  34. Eyres, G., Dufour, J.-P.: Hop essential oil: Analysis, chemical composition and odor characteristics. In: Preedy, V.R. (ed.) Beer in Health and Disease Prevention, pp. 239–254. Academic Press, London, UK (2009). https://doi.org/10.1016/b978-0-12-373891-2.00022-5

    Chapter  Google Scholar 

  35. Filly, A., Fabiano-Tixier, A.S., Louis, C., Fernandez, X., Chemat, F.: Water as a green solvent combined with different techniques for extraction of essential oil from lavender flowers. C R Chim. 19(6), 707–717 (2016). https://doi.org/10.1016/j.crci.2016.01.018

    Article  CAS  Google Scholar 

  36. Elguea-Culebras, G.O., Bravo, E.M., Sanchez-Vioque, R.: Potential sources and methodologies for the recovery of phenolic compounds from distillation residues of Mediterranean aromatic plants. An approach to the valuation of by-products of the essential oil market—A review. Ind. Crops Prod. 175, 114261 (2022). https://doi.org/10.1016/j.indcrop.2021.114261

    Article  CAS  Google Scholar 

  37. Sharma, N., Shafeeq, H., Ganjoo, A., Singh, D., Gairola, S., Babu, V.: Valorization of distillation wastes of aromatic crops for the cultivation of biofortifed Pleurotus forida. Waste Biomass Valorization. (2022). https://doi.org/10.1007/s12649-022-01946-z

    Article  Google Scholar 

  38. Skendi, A., Irakli, M., Chatzopoulou, P., Bouloumpasi, E., Biliaderis, C.G.: Phenolic extracts from solid wastes of the aromatic plant essential oil industry: Potential uses in food applications. Food Chem. Adv. 1, 100065 (2022). https://doi.org/10.1016/j.focha.2022.100065

    Article  Google Scholar 

  39. Truzzi, E., Chaouch, M.A., Rossi, G., Tagliazucchi, L., Bertelli, D., Benvenuti, S.: Characterization and valorization of the agricultural waste obtained from lavandula steam distillation for its reuse in the food and pharmaceutical fields. Molecules. 27, 1613 (2022). https://doi.org/10.3390/molecules27051613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Seyedalikhani, S., Esperschuetz, J., Dickinson, N.M., Hofmann, R., Breitmeyer, J., Horswell, J., Robinson, B.H.: Biowastes to augment the essential oil production of Leptospermum scoparium and Kunzea robusta in low-fertility soil. Plant. Physiol. Biochem. 137, 213–221 (2019). https://doi.org/10.1016/j.plaphy.2019.02.008

    Article  CAS  PubMed  Google Scholar 

  41. Zaccardelli, M., Roscigno, G., Pane, C., Celano, G., Matteo, M.D., Mainente, M., Vuotto, A., Mencherini, T., Esposito, T., Vitti, A., Falco, E.D.: Essential oils and quality composts sourced by recycling vegetable residues from the aromatic plant supply chain. Ind. Crops Prod. 162, 113255 (2021). https://doi.org/10.1016/j.indcrop.2021.113255

    Article  CAS  Google Scholar 

  42. Agustina, S.E., Kholifah, L.S.: Prospect of essential oil industrial waste as energy resources for essential oil production process. IOP Conf. Series: Earth and Environmental Science. 1116, 012039 (2022). https://doi.org/10.1088/1755-1315/1116/1/012039

    Article  Google Scholar 

  43. Celano, R., Piccinelli, A.L., Pagano, I., Roscigno, G., Campone, L., De Falco, E., Russo, M., Rastrelli, L.: Oil distillation wastewaters from aromatic herbs as new natural source of antioxidant compounds. Food Res. Int. 99(1), 298–307 (2017). https://doi.org/10.1016/j.foodres.2017.05.036

    Article  CAS  PubMed  Google Scholar 

  44. Gerçek, Y.C., Bayram, S., Çelik, S., Canlı, D., Mavaldi, M.H., Boztas, K., Bastürk, F.N., Kırkıncı, S., Yesil, Y., Kösesakal, T., Öz, G.C., Bayram, N.E.: Characterization of essential oil and wastewater from Thymus nummularius M. Bieb. And micromorphological examination of glandular trichomes. J. Essent. Oil-Bear Plants. 25(3), 690–706 (2022). https://doi.org/10.1080/0972060X.2022.2107403

    Article  Google Scholar 

  45. Gateva, S., Jovtchev, G., Angelova, T., Dobreva, A., Mileva, M.: The anti-genotoxic activity of wastewaters produced after water-steam distillation of bulgarian Rosa damascena Mill. And Rosa alba L. essential oils. Life. 12(3), 455 (2022). https://doi.org/10.3390/life12030455

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  46. Aćimović, M., Tešević, V., Smiljanić, K., Cvetković, M., Stanković, J., Kiprovski, B., Sikora, V.: Hydrolates—By-products of essential oil distillation: chemical composition, biological activity and potential uses. Adv. Technol. 9(2), 54–70 (2020). https://doi.org/10.5937/savteh2002054A

    Article  Google Scholar 

  47. Tavares, C.S., Martins, A., Faleiro, M.L., Miguel, M.G., Duarte, L.C., Gameiro, J.A., Roseiro, L.B., Figueiredo, A.C.: Bioproducts from forest biomass: Essential oils and hydrolates from wastes of Cupressus lusitanica Mill. and Cistus ladanifer L. Ind Crops Prod. 144, 11203410 (2020). https://doi.org/10.1016/j.indcrop.2019.112034

    Article  CAS  Google Scholar 

  48. Galisteo, A., González-Coloma, A., Castillo, P., Andrés, M.F.: Valorization of the hydrolate byproduct from the industrial extraction of purple Alium sativum essential oil as a source of nematicidal products. Life. 12, 905 (2022). https://doi.org/10.3390/life12060905

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  49. Konstantinović, B., Popov, M., Samardžić, N., Aćimović, M., Šućur Elez, J., Stojanović, T., Crnković, M., Rajković, M.: The effect of Thymus vulgaris L. hydrolate solutions on the seed germination, seedling length, and oxidative stress of some cultivated and weed species. Plants. 11, 1782 (2022). https://doi.org/10.3390/plants11131782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ranitović, A., Šovljanski, O., Aćimović, M., Pezo, L., Tomić, A., Travičić, V., Saveljić, A., Cvetković, D., Cetković, G., Vulić, J., Markov, S.: Biological potential of alternative kombucha beverages fermented on essential oil distillation by-products. Fermentation. 8, 625 (2022). https://doi.org/10.3390/fermentation8110625

    Article  CAS  Google Scholar 

  51. Council of Europe: European Pharmacopoeia, 3rd edn. Counci lof Europe, Strasbourg (1999)

    Google Scholar 

  52. Tumbas Šaponjac, V., Gironés-Vilaplana, A., Djilas, S., Mena, P., Ćetković, G., Moreno, D.A., Canadanović-Brunet, J., Vulić, J., Stajčić, S., Krunić, M.: Anthocyanin profiles and biological properties of caneberry (Rubuss spp.) press residues. JSFA. 94, 2393–2400 (2014). https://doi.org/10.1002/jsfa.6564

    Article  CAS  Google Scholar 

  53. Oyaizu, M.: Studies on products of browning reaction–antioxidant activities of products of browning reaction prepared from glucosamine. Jpn J. Nutr. 44, 307–315 (1986)

    Article  CAS  Google Scholar 

  54. Šovljanski, O., Šeregelj, V., Pezo, L., Tumbas Šaponjac, V., Vulić, J., Cvanić, T., Markov, S., Ćetković, G., Čanadanović-Brunet, J.: Horned melon pulp, peel, and seed: new insight into phytochemical and biological properties. Antioxidants 11(5), 825 (2022). https://doi.org/10.3390/antiox11050825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Voll, E., Voll, C.E., Filho, R.V.: Allelopathic effects of aconitic acid on wild poinsettia (Euphorbia heterophy L. La) and morningglory (Ipomoea grandifo Lia). J. Environ. Sci. Health B. 40, 69–75 (2005). https://doi.org/10.1081/pfc-200034226

    Article  PubMed  Google Scholar 

  56. Marinov-Serafimov, P., Dimitrova, T.S., Golubinova, I., Ilieva, A.: Study of suitability of some solutions in allelopathic researches. Herbologia. 8, 1–10 (2007)

    Google Scholar 

  57. Chattopadhyay, P.B., Rangarajan, R.: Application of ANN in sketching spatial nonlinearity of unconfined aquifer in agricultural basin. Agric. Water Manag. 133, 81–91 (2014). https://doi.org/10.1016/j.agwat.2013.11.007

    Article  Google Scholar 

  58. Zheng, Y., Shadloo, M.S., Nasiri, H., Maleki, A., Karimipour, A., Tlili, I.: Prediction of viscosity of biodiesel blends using various artificial model and comparison with empirical correlations. Renew. Energ. 153, 1296–1306 (2020). https://doi.org/10.1016/j.renene.2020.02.087

    Article  CAS  Google Scholar 

  59. Rajković, D., Marjanović Jeromela, A., Pezo, L., Lončar, B., Zanetti, F., Monti, A., Kondić Špika, A.: Yield and quality prediction of winter rapeseed—Artificial neural network and random forest models. Agronomy 12(1), 58 (2021). https://doi.org/10.3390/agronomy12010058

    Article  Google Scholar 

  60. Vojnov, B., Jaćimović, G., Šeremešić, S., Pezo, L., Lončar, B., Krstić, Ä., Vujić, S., Ćupina, B.: The effects of winter cover crops on maize yield and crop performance in semiarid conditions—Artificial neural network approach. Agronomy 12(11), 2670 (2022). https://doi.org/10.3390/agronomy12112670

    Article  CAS  Google Scholar 

  61. Dimić, I., Pezo, L., Rakić, D., Teslić, N., Zeković, Z., Pavlić, B.: Supercritical fluid extraction kinetics of cherry seed oil: kinetics modeling and ANN optimization. Foods 10(7), 1513 (2021). https://doi.org/10.3390/foods10071513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yoon, H., Hyun, Y., Ha, K., Lee, K.K., Kim, G.B.: A method to improve the stability and accuracy of ANN-and SVM-based time series models for long-term groundwater level predictions. Comput. Geosci. 90, 144–155 (2016). https://doi.org/10.1016/j.cageo.2016.03.002

    Article  ADS  Google Scholar 

  63. Voca, N., Pezo, L., Peter, A., Suput, D., Loncar, B., Kricka, T.: Modelling of corn kernel pre-treatment, drying and processing for ethanol production using artificial neural networks. Ind. Crops Prod. 162, 113293 (2021). https://doi.org/10.1016/j.indcrop.2021.113293

    Article  CAS  Google Scholar 

  64. Eriksson, L., Trygg, J., Wold, S.: A chemometrics toolbox based on projections and latent variables. J. Chemom. 28(5), 332–346 (2014). https://doi.org/10.1002/cem.2581

    Article  CAS  Google Scholar 

  65. Iglesias, A., Mitton, G., Szawarski, N., Cooley, H., Ramos, F., Meroi Arcerito, F., Brasesco, C., Ramirez, C., Gende, L., Eguaras, M., Fanovich, A., Maggi, M.: Essential oils from Humulus lupulus as novel control agents against Varroa destructor. Ind. Crops Prod. 158, 113043 (2020). https://doi.org/10.1016/j.indcrop.2020.113043

    Article  CAS  Google Scholar 

  66. Wajs-Bonikowska, A., Sienkiewicz, M., Stobiecka, A., Maciag, A., Szoka, L., Karna, E.: Chemical composition and biological activity of Abies alba and A. koreana seed and cone essential oils and characterization of their seed hydrolates. Chem. Biodivers. 12, 407–418 (2015). https://doi.org/10.1002/cbdv.201400167

    Article  CAS  PubMed  Google Scholar 

  67. Garneau, F.X., Collin, G., Gagnon, H., Pichette, A.: Chemical composition of the hydrosol and the essential oil of three different species of the Pinaceae family: Picea glauca (Moench) Voss., Picea mariana (Mill.) B.S.P., and Abies balsamea (L.) Mill. J Essent Oil-Bearing Plants 15, 227–236 (2012). https://doi.org/10.1080/0972060X.2012.10644040

    Article  CAS  Google Scholar 

  68. Collin, G., Gagnon, H.: Chemical composition and stability of the hydrosol obtained during the production of essential oils. III. The case of Myrica gale L., Comptonia peregrine (L.) Coulter and Ledum groenlandicum Retzius. Am. J. Essent. Oils Nat. Prod. 4, 07–19 (2016)

    Google Scholar 

  69. Collin, G., Gagnon, H., St-Gelais, A., Turcotte, M.: Composition of the essential oil and hydrosol of the roots of Ligusticum porteri. Am. J. Essent. Oils Nat. Prod. 1, 4–10 (2014)

    Google Scholar 

  70. Zatla, A.T., Dib, M.E.A., Djabou, N., Ilias, F., Costa, J., Muselli, A.: Antifungal activities of essential oils and hydrosol extracts of Daucus carota subsp. sativus for the control of fungal pathogens, in particular gray rot of strawberry during storage. J. Essent. Oil Res. 29, 391–399 (2017). https://doi.org/10.1080/10412905.2017.1322008

    Article  CAS  Google Scholar 

  71. Prakash, B., Singh, P., Goni, R., Raina, A.K.P., Dubey, N.K.: Efficacy of Angelica archangelica essential oil, phenyl ethyl alcohol and α-terpineol against isolated molds from walnut and their antiaflatoxigenic and antioxidant activity. J. Food Sci. Technol. 52(4), 2220–2228 (2015). https://doi.org/10.1007/s13197-014-1278-x

    Article  CAS  PubMed  Google Scholar 

  72. Krofta, K., Mikyška, A., Hašková, D.: Antioxidant characteristics of hops and hop products. J. Inst. Brew. 114(2), 160–166 (2008). https://doi.org/10.1002/j.2050-0416.2008.tb00321.x

    Article  CAS  Google Scholar 

  73. Fraternale, D., Flamini, G., Ricci, D.: Essential oil composition and antimicrobial activity of Angelica archangelica L. (Apiaceae) roots. J. Med. Food. 17(9), 1043–1047 (2014). https://doi.org/10.1089/jmf.2013.0012

    Article  CAS  PubMed  Google Scholar 

  74. Fraternale, D., Flamini, G., Ricci, D.: Essential oil composition of Angelica archangelica L. (Apiaceae) roots and its antifungal activity against plant pathogenic fungi. Plant. Biosyst. 150(3), 558–563 (2014). https://doi.org/10.1080/11263504.2014.988190

    Article  Google Scholar 

  75. Langezaal, C.R., Chandra, A., Scheffer, J.J.C.: Antimicrobial screening of essential oils and extracts of some Humulus lupulus L. cultivars.  Pharm. Weekbl. Sci. 14(6), 353–356 (1992). https://doi.org/10.1007/bf01970171

    Article  CAS  PubMed  Google Scholar 

  76. Jirovetz, L., Bail, S., Buchbauer, G., Denkova, Z., Slavchev, A., Stoyanova, A., Schmidt, E., Geissler, M.: Antimicrobial testings, gas chromatographic analysis and olfactory evaluation of an essential oil of hop cones (Humulus lupulus L.) from Bavaria and some of its main compounds. Sci. Pharm. 74, 189–201 (2006)

    Article  CAS  Google Scholar 

  77. Lobiuc, A., Olteanu, Z., Stratu, A., Cojocaru, D., Zamfirache, M.M.: The effect of some Angelica L. sp. hydrosols on seed germination and initial plant growth. Carpathian J. Earth Environ. Sci. 9(1), 133–140 (2014)

    Google Scholar 

  78. Iglesias, A.E., Fuentes, G., Mitton, G., Ramos, F., Brasesco, C., Manzo, R., Orallo, D., Gende, L., Eguaras, M., Ramirez, C., Fanovich, A., Maggi, M.: Hydrolats from Humulus lupulus and their potential activity as an organic control for Varroa destructor. Plants. 11, 3329 (2022). https://doi.org/10.3390/plants11233329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia, grant numbers: 451-03-47/2023-01/200054 (J.L.), 451-03-47/2023-01/200032 (M.A., V.S.), 451-03-47/2023-01/200051 (L.P.), 451-03-47/2023-01/200134 (B.L., O.Š., V.T.) and 451-03-47/20023-01/200168 (Lj.V.).

Author information

Authors and Affiliations

Authors

Contributions

JL: resources, conceptualisation; MA: writing (original draft), project administration; LP: data curation, conceptualisation; BL: data curation, writing (original draft); BK: methodology, supervision; MP: formal analysis, investigation; OŠ: formal analysis, investigation; VT: formal analysis, investigation; VS: resources, methodology; LV: supervision, project administration.

Corresponding author

Correspondence to Milica Aćimović.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 450.4 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarević, J., Aćimović, M., Pezo, L. et al. Chemical Composition and In Vitro Biological Activity of Angelica Root and Hop Strobile Essential Oils and Hydrolates. Waste Biomass Valor 15, 867–883 (2024). https://doi.org/10.1007/s12649-023-02209-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02209-1

Keywords

Navigation