Skip to main content
Log in

Nitrogen Losses Mitigation by Supplementing Composting Mixture with Biochar: Research of the Ruling Parameters

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Different strategies have been tested to reduce nitrogen losses and gaseous ammonia emissions during composting. Among them, the supplementation of the composting mixture with biochar has shown good results and has attracted increasing attention from researchers over more than a decade. In order to capitalise on the numerous existing results, the relevant data from the literature were subjected to descriptive statistics and to a Pearson parametric correlation analysis. The statistical treatment of the literature data confirms that biochar reduces nitrogen losses, ammonia and nitrous oxide emissions during composting with highly variable performance (respectively reduction of 26.2% ± 16.7%; 46% ± 26.4%; 46.1% ± 31.1%). Statistically significant correlations were identified between N losses and biochar properties. However, the PCA results show that only 44.75% of the variability in the N loss reduction dataset and 57.8% of the ammonia emission reduction dataset were explained by the main variables available in the literature. This suggests that much of the variability in biochar performance remains unexplained. The large number of variables involved in the process and the lack of fine characterisation of biochar in most studies explain the remaining difficulty in fully understanding the complex action of biochar in composting and opens up prospects for further research.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated and analysed during the current study are available as an excel file (Supplementary Information - datasets_02_08_22.xlsx) submitted as supplementary information.

References

  1. Salemdeeb, R., zu Ermgassen, E.K.H.J., Kim, M.H., Balmford, A., Al-Tabbaa, A.: Environmental and health impacts of using food waste as animal feed: a comparative analysis of food waste management options. J. Clean. Prod. 140, 871–880 (2017). https://doi.org/10.1016/j.jclepro.2016.05.049

    Article  PubMed  PubMed Central  Google Scholar 

  2. Leip, A., Billen, G., Garnier, J., Grizzetti, B., Lassaletta, L., Reis, S., Simpson, D., Sutton, M.A., De Vries, W., Weiss, F., Westhoek, H.: Impacts of european livestock production: nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity. Environ. Res. Lett. (2015). https://doi.org/10.1088/1748-9326/10/11/115004

    Article  Google Scholar 

  3. Vallero, D.A.: Air pollution biogeochemistry. In: Vallero, D.A. (ed.) Air Pollution Calculations, pp. 175–206. Elsevier, Amsterdam (2019)

    Chapter  Google Scholar 

  4. Beck-Friis, B., Smårs, S., Jönsson, H., Kirchmann, H.: Gaseous emissions of carbon dioxide, ammonia and nitrous oxide from organic household waste in a compost reactor under different temperature regimes. J. Agric. Eng. Res. 78, 423–430 (2001). https://doi.org/10.1006/jaer.2000.0662

    Article  Google Scholar 

  5. Cáceres, R., Malińska, K., Marfà, O.: Nitrification within composting: a review. Waste Manag. 72, 119–137 (2018). https://doi.org/10.1016/j.wasman.2017.10.049

    Article  CAS  PubMed  Google Scholar 

  6. Dabert, P., Pourcher, A.-M.: Aspects biochimiques et microbiologiques du compostage. In: De Guardia A. (eds.). Compostage et Composts: Avancées Scientifiques et Techniques, pp. 7–39. Lavoisier Tec & Doc, (2018)

  7. Mohammed-Nour, A., Al-Sewailem, M., El-Naggar, A.H.: The influence of alkalization and temperature on ammonia recovery from cow manure and the chemical properties of the effluents. Sustainability (2019). https://doi.org/10.3390/su11082441

    Article  Google Scholar 

  8. Sánchez-Monedero, M.A., Roig, A., Paredes, C., Bernal, M.P.: Nitrogen transformation during organic waste composting by the rutgers system and its effects on pH, EC and maturity of the composting mixtures. Bioresour. Technol. 78, 301–308 (2001). https://doi.org/10.1016/S0960-8524(01)00031-1

    Article  PubMed  Google Scholar 

  9. Vandecasteele, B., Willekens, K., Steel, H., D’Hose, T., Van Waes, C., Bert, W.: Feedstock mixture composition as key factor for C/P ratio and phosphorus availability in composts: role of biodegradation potential, biochar amendment and calcium content. Waste Biomass Valoriz. 8, 2553–2567 (2017). https://doi.org/10.1007/s12649-016-9762-3

    Article  CAS  Google Scholar 

  10. Tomczyk, A., Sokołowska, Z., Boguta, P.: Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Biotechnol. 19, 191–215 (2020). https://doi.org/10.1007/s11157-020-09523-3

    Article  CAS  Google Scholar 

  11. Kim, K.H., Kim, J.Y., Cho, T.S., Choi, J.W.: Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresour. Technol. 118, 158–162 (2012). https://doi.org/10.1016/j.biortech.2012.04.094

    Article  CAS  PubMed  Google Scholar 

  12. Manyà, J.J.: Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ. Sci. Technol. 46, 7939–7954 (2012). https://doi.org/10.1021/es301029g

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Atkinson, C.J., Fitzgerald, J.D., Hipps, N.A.: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 337, 1–18 (2010). https://doi.org/10.1007/s11104-010-0464-5

    Article  CAS  Google Scholar 

  14. Sohi, S.P., Krull, E., Lopez-Capel, E., Bol, R.: A review of biochar and its use and function in soil. Adv. Agron. 105, 47–82 (2010). https://doi.org/10.1016/S0065-2113(10)05002-9

    Article  CAS  Google Scholar 

  15. Sanchez-Monedero, M.A., Cayuela, M.L., Roig, A., Jindo, K., Mondini, C., Bolan, N.: Role of biochar as an additive in organic waste composting. Bioresour. Technol. 247, 1155–1164 (2018). https://doi.org/10.1016/j.biortech.2017.09.193

    Article  CAS  PubMed  Google Scholar 

  16. Prost, K., Borchard, N., Siemens, J., Kautz, T., Séquaris, J.-M., Möller, A., Amelung, W.: Biochar affected by composting with farmyard manure. J. Environ. Qual. 42, 164–172 (2013). https://doi.org/10.2134/jeq2012.0064

    Article  CAS  PubMed  Google Scholar 

  17. Kammann, C.I., Schmidt, H.P., Messerschmidt, N., Linsel, S., Steffens, D., Müller, C., Koyro, H.W., Conte, P., Stephen, J.: Plant growth improvement mediated by nitrate capture in co-composted biochar. Sci. Rep. 5, 1–13 (2015). https://doi.org/10.1038/srep11080

    Article  Google Scholar 

  18. Hagemann, N., Kammann, C.I., Schmidt, H.P., Kappler, A., Behrens, S.: Nitrate capture and slow release in biochar amended compost and soil. PLoS One 12, 1–16 (2017). https://doi.org/10.1371/journal.pone.0171214

    Article  CAS  Google Scholar 

  19. Zhang, F., Wei, Z., Wang, J.J.: Integrated application effects of biochar and plant residue on ammonia loss, heavy metal immobilization, and estrogen dissipation during the composting of poultry manure. Waste Manag. 131, 117–125 (2021). https://doi.org/10.1016/j.wasman.2021.05.037

    Article  CAS  PubMed  Google Scholar 

  20. Puth, M.T., Neuhäuser, M., Ruxton, G.D.: Effective use of Pearson’s product-moment correlation coefficient. Anim. Behav. 93, 183–189 (2014). https://doi.org/10.1016/j.anbehav.2014.05.003

    Article  Google Scholar 

  21. Hestrin, R., Enders, A., Lehmann, J.: Ammonia volatilization from composting with oxidized biochar. J. Environ. Qual. 49, 1690–1702 (2020). https://doi.org/10.1002/jeq2.20154

    Article  CAS  PubMed  Google Scholar 

  22. Lehmann, J., Joseph, S.: Biochar for Environmental Management: Science, Technology and Implementation, 2nd edn. Taylor and Francis, New York (2015)

    Book  Google Scholar 

  23. Suliman, W., Harsh, J.B., Abu-Lail, N.I., Fortuna, A.M., Dallmeyer, I., Garcia-Perez, M.: Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass Bioenergy 84, 37–48 (2016). https://doi.org/10.1016/j.biombioe.2015.11.010

    Article  CAS  Google Scholar 

  24. Novak, J.M., Johnson, M.G.: Elemental and spectroscopic characterization of low-temperature (350 °C) lignocellulosic- and manure-based designer biochars and their use as soil amendments. Elsevier, Amsterdam (2019)

    Book  Google Scholar 

  25. Chen, W., Liao, X., Wu, Y., Liang, J.B., Mi, J., Huang, J., Zhang, H., Wu, Y., Qiao, Z., Li, X., Wang, Y.: Effects of different types of biochar on methane and ammonia mitigation during layer manure composting. Waste Manag. 61, 506–515 (2017). https://doi.org/10.1016/j.wasman.2017.01.014

    Article  CAS  PubMed  Google Scholar 

  26. Agyarko-Mintah, E., Cowie, A., Van Zwieten, L., Singh, B.P., Smillie, R., Harden, S., Fornasier, F.: Biochar lowers ammonia emission and improves nitrogen retention in poultry litter composting. Waste Manag. 61, 129–137 (2017). https://doi.org/10.1016/j.wasman.2016.12.009

    Article  CAS  PubMed  Google Scholar 

  27. Shaaban, A., Se, S.M., Dimin, M.F., Juoi, J.M., Husin, M., Mitan, M.H.: Influence of heating temperature and holding time on biochars derived from rubber wood sawdust via slow pyrolysis. J. Anal. Appl. Pyrolysis 107, 31–39 (2014). https://doi.org/10.1016/j.jaap.2014.01.021

    Article  CAS  Google Scholar 

  28. Tag, A.T., Duman, G., Ucar, S., Yanik, J.: Effects of feedstock type and pyrolysis temperature on potential applications of biochar. J. Anal. Appl. Pyrolysis 120, 200–206 (2016). https://doi.org/10.1016/j.jaap.2016.05.006

    Article  CAS  Google Scholar 

  29. Claoston, N., Samsuri, A.W., Ahmad Husni, M.H., Mohd Amran, M.S.: Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. Waste Manag. Res. 32, 331–339 (2014). https://doi.org/10.1177/0734242X14525822

    Article  CAS  PubMed  Google Scholar 

  30. Janczak, D., Malińska, K., Czekała, W., Cáceres, R., Lewicki, A., Dach, J.: Biochar to reduce ammonia emissions in gaseous and liquid phase during composting of poultry manure with wheat straw. Waste Manag. 66, 36–45 (2017). https://doi.org/10.1016/j.wasman.2017.04.033

    Article  CAS  PubMed  Google Scholar 

  31. López-Cano, I., Roig, A., Cayuela, M.L., Alburquerque, J.A., Sánchez-Monedero, M.A.: Biochar improves N cycling during composting of olive mill wastes and sheep manure. Waste Manag. 49, 553–559 (2016). https://doi.org/10.1016/j.wasman.2015.12.031

    Article  CAS  PubMed  Google Scholar 

  32. Abrishamkesh, S., Gorji, M., Asadi, H., Bagheri-Marandi, G.H., Pourbabaee, A.A.: Effects of rice husk biochar application on the propertiesof alkaline soil and lentil growth. Plant Soil Environ. 62, 475–482 (2015). https://doi.org/10.17221/117/2015-PSE

    Article  CAS  Google Scholar 

  33. Zhang, J., Liu, J., Liu, R.: Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Bioresour. Technol. 176, 288–291 (2015). https://doi.org/10.1016/j.biortech.2014.11.011

    Article  CAS  PubMed  Google Scholar 

  34. Lange, S.F., Allaire, S.E., Charles, A., Auclair, I.K., Bajzak, C.E.: Physicochemical properties of 43 biochars. CRMR-2018-SA-2-EN. Centre de Recherche sur les Matériaux Renouvelables, Université Laval and GECA Environnement, Quebec Qc. Canada, 60 p. (2018). https://www.researchgate.net/profile/Suzanne-Allaire/publication/323366209_Physicochemical_Properties_of_43_Biochars_A_Co-Production_of_Universite_Laval_and_GECA_Environnement_Production_Team/links/5a903a4945851535bcd5811d/Physicochemical-Properties-of-43-Biochars-A-Co-Production-of-Universite-Laval-and-GECA-Environnement-Production-Team.pdf Accessed July 2022

  35. Pardo, G., Moral, R., Aguilera, E., del Prado, A.: Gaseous emissions from management of solid waste: a systematic review. Glob. Change Biol. 21, 1313–1327 (2015). https://doi.org/10.1111/gcb.12806

    Article  ADS  Google Scholar 

  36. Chowdhury, M.A., de Neergaard, A., Jensen, L.S.: Composting of solids separated from anaerobically digested animal manure: effect of different bulking agents and mixing ratios on emissions of greenhouse gases and ammonia. Biosyst. Eng. 124, 63–77 (2014). https://doi.org/10.1016/j.biosystemseng.2014.06.003

    Article  Google Scholar 

  37. Kim, Y., Kim, T.H., Ergün, T.: The instability of the Pearson correlation coefficient in the presence of coincidental outliers. Financ. Res. Lett. 13, 243–257 (2015). https://doi.org/10.1016/j.frl.2014.12.005

    Article  Google Scholar 

  38. Zhang, M., Song, G., Gelardi, D.L., Huang, L., Khan, E., Mašek, O., Parikh, S.J., Ok, Y.S.: Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water. Water Res. (2020). https://doi.org/10.1016/j.watres.2020.116303

    Article  PubMed  PubMed Central  Google Scholar 

  39. Joseph, S., Kammann, C.I., Shepherd, J.G., Conte, P., Schmidt, H.P., Hagemann, N., Rich, A.M., Marjo, C.E., Allen, J., Munroe, P., Mitchell, D.R.G., Donne, S., Spokas, K., Graber, E.R.: Microstructural and associated chemical changes during the composting of a high temperature biochar: mechanisms for nitrate, phosphate and other nutrient retention and release. Sci. Total Environ. 618, 1210–1223 (2018). https://doi.org/10.1016/j.scitotenv.2017.09.200

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Archanjo, B.S., Mendoza, M.E., Albu, M., Mitchell, D.R.G., Hagemann, N., Mayrhofer, C., Mai, T.L.A., Weng, Z., Kappler, A., Behrens, S., Munroe, P., Achete, C.A., Donne, S., Araujo, J.R., van Zwieten, L., Horvat, J., Enders, A., Joseph, S.: Nanoscale analyses of the surface structure and composition of biochars extracted from field trials or after co-composting using advanced analytical electron microscopy. Geoderma 294, 70–79 (2017). https://doi.org/10.1016/j.geoderma.2017.01.037

    Article  ADS  CAS  Google Scholar 

  41. Sun, D., Lan, Y., Xu, E.G., Meng, J., Chen, W.: Biochar as a novel niche for culturing microbial communities in composting. Waste Manag. 54, 93–100 (2016). https://doi.org/10.1016/j.wasman.2016.05.004

    Article  CAS  PubMed  Google Scholar 

  42. Quin, P., Joseph, S., Husson, O., Donne, S., Mitchell, D., Munroe, P., Phelan, D., Cowie, A., Van Zwieten, L.: Lowering N2O emissions from soils using eucalypt biochar: the importance of redox reactions. Sci. Rep. 5, 1–14 (2015). https://doi.org/10.1038/srep16773

    Article  CAS  Google Scholar 

  43. Zeng, G., Zhang, J., Chen, Y., Yu, Z., Yu, M., Li, H., Liu, Z., Chen, M., Lu, L., Hu, C.: Relative contributions of archaea and bacteria to microbial ammonia oxidation differ under different conditions during agricultural waste composting. Bioresour. Technol. 102, 9026–9032 (2011). https://doi.org/10.1016/j.biortech.2011.07.076

    Article  CAS  PubMed  Google Scholar 

  44. Guo, H., Gu, J., Wang, X., Yu, J., Nasir, M., Zhang, K., Sun, W.: Microbial driven reduction of N2O and NH3 emissions during composting: effects of bamboo charcoal and bamboo vinegar. J. Hazard. Mater. 390, 121292 (2020). https://doi.org/10.1016/j.jhazmat.2019.121292

    Article  CAS  PubMed  Google Scholar 

  45. Yang, Y., Kumar Awasthi, M., Wu, L., Yan, Y., Lv, J.: Microbial driving mechanism of biochar and bean dregs on NH3 and N2O emissions during composting. Bioresour. Technol. 315, 123829 (2020). https://doi.org/10.1016/j.biortech.2020.123829

    Article  CAS  PubMed  Google Scholar 

  46. Wang, C., Lu, H., Dong, D., Deng, H., Strong, P.J., Wang, H., Wu, W.: Insight into the effects of biochar on manure composting: evidence supporting the relationship between N2O emission and denitrifying community. Environ. Sci. Technol. 47, 7341–7349 (2013). https://doi.org/10.1021/es305293h

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Li, S., Song, L., Jin, Y., Liu, S., Shen, Q., Zou, J.: Linking N2O emission from biochar–amended composting process to the abundance of denitrify (nirK and nosZ) bacteria community. AMB Express (2016). https://doi.org/10.1186/s13568-016-0208-x

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shan, G., Li, W., Liu, J., Zhu, L., Hu, X., Yang, W., Tan, W., Xi, B.: Nitrogen loss, nitrogen functional genes, and humification as affected by hydrochar addition during chicken manure composting. Bioresour. Technol. 369, 128512 (2023). https://doi.org/10.1016/j.biortech.2022.128512

    Article  CAS  PubMed  Google Scholar 

  49. Deng, L., Liu, W., Chang, N., Sun, L., Zhang, J., Bello, A., Uzoamaka Egbeagu, U., Shi, S., Sun, Y., Xu, X.: Disentangling the coupling relationships between functional denitrifiers and nitrogen transformation during cattle-manure and biochar composting: a novel perspective. Bioresour. Technol. 367, 128235 (2023). https://doi.org/10.1016/j.biortech.2022.128235

    Article  CAS  PubMed  Google Scholar 

  50. Schmidt, H.P., Kammann, C., Hagemann, N., Leifeld, J., Bucheli, T.D., Sánchez Monedero, M.A., Cayuela, M.L.: Biochar in agriculture–a systematic review of 26 global meta-analyses. GCB Bioenergy 13, 1708–1730 (2021). https://doi.org/10.1111/gcbb.12889

    Article  CAS  Google Scholar 

Download references

Funding

This research received a funding from the Regional Council of Bretagne, France.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MVFS and AT. The first draft of the manuscript was written by MVFS and all authors commented on previous versions of the manuscript. All authors worked out, read and approved the final manuscript. Moreover, thanks are due to PD who accepted to read and proof the last version of the manuscript.

Corresponding author

Correspondence to Anne Trémier.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 593 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira Firmino, M., Trémier, A. Nitrogen Losses Mitigation by Supplementing Composting Mixture with Biochar: Research of the Ruling Parameters. Waste Biomass Valor 15, 959–971 (2024). https://doi.org/10.1007/s12649-023-02204-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02204-6

Keywords

Navigation