Skip to main content
Log in

Start-up of Aerobic Granular Biomass System: Fate of Organics and Nutrients Removal From Anaerobic Effluent

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

The up-flow anaerobic sludge blanket reactor (UASB) treated effluent does not meet the national disposal standards of certain countries, such as India and Brazil. To meet the required standards, it is necessary to upgrade the UASB technology through a post-treatment system. The present work aimed to investigate the optimal operating conditions for the formation of granules in an anaerobic/oxic/anoxic (A/O/A) cyclic mode aerobic granular biomass reactor (AGBR) for the treatment of anaerobic effluent (UASB effluent).

Methods

Two rectangular reactors, R1 and R2, were used to cultivate aerobic granular biomass (AGB). R1 served as the control reactor and was fed with low-strength synthetic wastewater throughout the study, while R2 was fed with medium strength sewage and UASB effluent over the study periods.

Results

Granules start-ups were observed on the 30th and 20th days in R1 and R2, respectively. In R1, the removal efficiency of COD, NH4+-N, total nitrogen (TN), and PO43−-P was achieved 80.86%, 97.46%, 53.6%, and 45%, respectively. Whereas the removal efficiency of COD, NH4+-N, TN, and PO43−-P was observed 63.61%, 58.18%, 50%, and 40%, respectively, in R2. The results indicated that the short aeration time, comprising 50% of the total cycle time over a 3-h duration, was the most effective operational phase for achieving high removal of organics and nutrients.

Conclusion

The study demonstrates that the A/O/A AGBR effectively cultivates AGB and removes organics and nutrients from anaerobic effluent. The use of medium-strength sewage as a substrate in R2 proved beneficial in reducing the granule start-up time for treating low-strength anaerobic effluent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Alattabi, A.W., Harris, C.B., Alkhaddar, R.M., Ortoneda-Pedrola, M., Alzeyadi, A.T.: An investigation into the effect of MLSS on the effluent quality and sludge settleability in an aerobic-anoxic sequencing batch reactor (AASBR). J Water Process Eng 30, 100479 (2019)

    Article  Google Scholar 

  2. Arthur, P.M., Konaté, Y., Sawadogo, B., Sagoe, G., Dwumfour-Asare, B., Ahmed, I., Williams, M.N.: Performance evaluation of a full-scale upflow anaerobic sludge blanket reactor coupled with trickling filters for municipal wastewater treatment in a developing country. Heliyon 8(8), e10129 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Daud, M. K., Rizvi, H., Akram, M. F., Ali, S., Rizwan, M., Nafees, M., & Jin, Z. S. (2018). Review of upflow anaerobic sludge blanket reactor technology: effect of different parameters and developments for domestic wastewater treatment. J. Chem.2018.

  4. De Kreuk, M.K., Kishida, N., Van Loosdrecht, M.C.M.: Aerobic granular sludge–state of the art. Water Sci. Technol. 55(8–9), 75–81 (2007)

    Article  PubMed  Google Scholar 

  5. de Sousa Rollemberg, S.L., Ferreira, T.J.T., Firmino, P.I.M., Dos Santos, A.B.: Impact of cycle type on aerobic granular sludge formation, stability, removal mechanisms and system performance. J. Environ. Manag. 256, 109970 (2020)

    Article  Google Scholar 

  6. de Sousa Rollemberg, S.L., Barros, A.R.M., Firmino, P.I.M., Dos Santos, A.B.: Aerobic granular sludge: cultivation parameters and removal mechanisms. Bioresour. Technol. 270, 678–688 (2018)

    Article  PubMed  Google Scholar 

  7. Devlin, T.R., Di Biase, A., Kowalski, M., Oleszkiewicz, J.A.: Granulation of activated sludge under low hydrodynamic shear and different wastewater characteristics. Biores. Technol. 224, 229–235 (2017)

    Article  CAS  Google Scholar 

  8. Franca, R.D., Pinheiro, H.M., van Loosdrecht, M.C., Lourenço, N.D.: Stability of aerobic granules during long-term bioreactor operation. Biotechnol. Adv. 36(1), 228–246 (2018)

    Article  CAS  PubMed  Google Scholar 

  9. Gao, D., Liu, L., Liang, H., Wu, W.M.: Aerobic granular sludge: characterization, mechanism of granulation and application to wastewater treatment. Crit. Rev. Biotechnol. 31(2), 137–152 (2011)

    Article  CAS  PubMed  Google Scholar 

  10. Grube, M., Lin, J.G., Lee, P.H., Kokorevicha, S.: Evaluation of sewage sludge-based compost by FT-IR spectroscopy. Geoderma 130(3–4), 324–333 (2006)

    Article  ADS  CAS  Google Scholar 

  11. Hamza, R., Rabii, A., Ezzahraoui, F.Z., Morgan, G., Iorhemen, O.T.: A review of the state of development of aerobic granular sludge technology over the last 20 years: full-scale applications and resource recovery. Case Stud. Chem. Environ. Eng. 5, 100173 (2022)

    Article  CAS  Google Scholar 

  12. He, Q., Song, J., Zhang, W., Gao, S., Wang, H., Yu, J.: Enhanced simultaneous nitrification, denitrification, and phosphorus removal through mixed carbon source by aerobic granular sludge. J. Hazard. Mater. 382, 121043 (2020)

    Article  CAS  PubMed  Google Scholar 

  13. He, Q., Chen, L., Zhang, S., Chen, R., Wang, H.: Hydrodynamic shear force shaped the microbial community and function in the aerobic granular sequencing batch reactors for low carbon to nitrogen (C/N) municipal wastewater treatment. Biores. Technol. 271, 48–58 (2019)

    Article  CAS  Google Scholar 

  14. He, Q., Chen, L., Zhang, S., Wang, L., Liang, J., Xia, W., Zhou, J.: Simultaneous nitrification, denitrification, and phosphorus removal in aerobic granular sequencing batch reactors with high aeration intensity: impact of aeration time. Bioresour Technol 263, 214–222 (2018)

    Article  CAS  PubMed  Google Scholar 

  15. He, Q., Zhang, W., Zhang, S., Wang, H.: Enhanced nitrogen removal in an aerobic granular sequencing batch reactor performing simultaneous nitrification, endogenous denitrification and phosphorus removal with low superficial gas velocity. Chem. Eng. J. 326, 1223–1231 (2017)

    Article  ADS  CAS  Google Scholar 

  16. Iorhemen, O.T., Liu, Y.: Effect of feeding strategy and organic loading rate on the formation and stability of aerobic granular sludge. J. Water Process Eng. 39, 101709 (2021)

    Article  Google Scholar 

  17. Iorhemen, O.T., Hamza, R.A., Zaghloul, M.S., Tay, J.H.: Simultaneous organics and nutrients removal in side-stream aerobic granular sludge membrane bioreactor (AGMBR). J. Water Process Eng. 21, 127–132 (2018)

    Article  Google Scholar 

  18. Jiang, W., Ma, Y., Nie, Z., Wang, N., Yu, G., Shi, X., Bian, D.: Improving nitrogen and phosphorus removal and sludge reduction in new integrated sewage treatment facility by adjusting biomass concentration. J. Water Process Eng. 50, 103203 (2022)

    Article  Google Scholar 

  19. Khan, A. A. (2011). Integrated UASB reactor and its different aerobic post treatment options for sewage treatment (Doctoral dissertation, Ph. D. thesis, Indian Institute of Technology, Roorkee, India).

  20. Kishida, N., Kim, J., Tsuneda, S., Sudo, R.: Anaerobi c/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms. Water Res. 40(12), 2303–2310 (2006)

    Article  CAS  PubMed  Google Scholar 

  21. Liang, D., Guo, W., Li, D., Ding, F., Li, P., Zheng, Z., Li, J.: Enhanced aerobic granulation for treating low-strength wastewater in an anaerobic-aerobic-anoxic sequencing batch reactor by selecting slow-growing organisms and adding carriers. Environ. Res. 205, 112547 (2022)

    Article  CAS  PubMed  Google Scholar 

  22. Lin, J., Zhang, P., Li, G., Yin, J., Li, J., Zhao, X.: Effect of COD/N ratio on nitrogen removal in a membrane-aerated biofilm reactor. Int. Biodeterior. Biodegrad. 113, 74–79 (2016)

    Article  CAS  Google Scholar 

  23. Liu, W., Wang, J., Shen, Y., Ji, X., Yang, D.: Response of nitritation granules to anaerobically pre-treated municipal wastewater at low temperatures in a continuous-flow reactor. Chemosphere 294, 133831 (2022)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Liu, X., Liu, J., Deng, D., Li, R., Guo, C., Ma, J., Chen, M.: Investigation of extracellular polymeric substances (EPS) in four types of sludge: factors influencing EPS properties and sludge granulation. J. Water Process Eng. 40, 101924 (2021)

    Article  Google Scholar 

  25. Liu, Y. Q., & Tay, J. H.: Fast formation of aerobic granules by combining strong hydraulic selection pressure with overstressed organic loading rate. Water. Res. 80, 256–266 (2015)

  26. Liu, Y., Niu, Q., Wang, S., Ji, J., Zhang, Y., Yang, M., Li, Y.Y.: Upgrading of the symbiosis of Nitrosomanas and anammox bacteria in a novel single-stage partial nitritation–anammox system: nitrogen removal potential and Microbial characterization. Bioresour. Technol. 244, 463–472 (2017)

    Article  CAS  PubMed  Google Scholar 

  27. Lotti, T., Carretti, E., Berti, D., Martina, M.R., Lubello, C., Malpei, F.: Extraction, recovery and characterization of structural extracellular polymeric substances from anammox granular sludge. J. Environ. Manag. 236, 649–656 (2019)

    Article  CAS  Google Scholar 

  28. Luo, J., Hao, T., Wei, L., Mackey, H.R., Lin, Z., Chen, G.H.: Impact of influent COD/N ratio on disintegration of aerobic granular sludge. Water Res. 62, 127–135 (2014)

    Article  CAS  PubMed  Google Scholar 

  29. Ma, J., Ji, Y., Fu, Z., Yan, X., Xu, P., Li, J., & He, Q. (2023). Performance of anaerobic/oxic/anoxic simultaneous nitrification, denitrification and phosphorus removal system overwhelmingly dominated by Candidatus_Competibacter: Effect of Aeration Time. https://doi.org/10.2139/ssrn.4434902

  30. Mai, D.T., Kunacheva, C., Stuckey, D.C.: A review of post-treatment technologies for anaerobic effluents for discharge and recycling of wastewater. Crit. Rev. Environ. Sci. Technol. 48(2), 167–209 (2018)

    Article  CAS  Google Scholar 

  31. Mirza, M.W., D’Silva, T.C., Gani, K.M., Afsar, S.S., Gaur, R.Z., Mutiyar, P.K., Lew, B.: Cultivation of anaerobic ammonium oxidizing bacteria (AnAOB) using different sewage sludge inoculums: process performance and microbial community analysis. J. Chem. Technol. Biotechnol. 96(2), 454–464 (2021)

    Article  CAS  Google Scholar 

  32. Moawad, A., Mahmoud, U.F., El-Khateeb, M.A., El-Molla, E.: Coupling of sequencing batch reactor and UASB reactor for domestic wastewater treatment. Desalination 242(1–3), 325–335 (2009)

    Article  CAS  Google Scholar 

  33. Mohan, T.K., Nancharaiah, Y.V., Venugopalan, V.P., Sai, P.S.: Effect of C/N ratio on denitrification of high-strength nitrate wastewater in anoxic granular sludge sequencing batch reactors. Ecol. Eng. 91, 441–448 (2016)

    Article  Google Scholar 

  34. Nancharaiah, Y.V., Reddy, G.K.K.: Aerobic granular sludge technology: mechanisms of granulation and biotechnological applications. Biores. Technol. 247, 1128–1143 (2018)

    Article  CAS  Google Scholar 

  35. Owaes, M., Gaur, R.Z., Hasan, M.N., Gani, K.M., Kumari, S., Bux, F., Kazmi, A.A.: Performance assessment of aerobic granulation for the post treatment of anaerobic effluents. Environ. Technol. Innov. 17, 100588 (2020)

    Article  CAS  Google Scholar 

  36. Peyong, Y.N., Zhou, Y., Abdullah, A.Z., Vadivelu, V.: The effect of organic loading rates and nitrogenous compounds on the aerobic granules developed using low strength wastewater. Biochem. Eng. J. 67, 52–59 (2012)

    Article  CAS  Google Scholar 

  37. Su, B., Cui, X., Zhu, J.: Optimal cultivation and characteristics of aerobic granules with typical domestic sewage in an alternating anaerobic/aerobic sequencing batch reactor. Biores. Technol. 110, 125–129 (2012)

    Article  CAS  Google Scholar 

  38. Tang, R., Han, X., Jin, Y., Yu, J.: Do increased organic loading rates accelerate aerobic granulation in hypersaline environment? J. Environ. Chem. Eng. 10(6), 108775 (2022)

    Article  CAS  Google Scholar 

  39. Vassalle, L., García-Galán, M.J., Aquino, S.F., Afonso, R.J.D.C.F., Ferrer, I., Passos, F., Mota, C.R.: Can high rate algal ponds be used as post-treatment of UASB reactors to remove micropollutants? Chemosphere 248, 125969 (2020)

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Wang, S., Huang, X., Liu, L., Yan, P., Chen, Y., Fang, F., Guo, J.: Insight into the role of exopolysaccharide in determining the structural stability of aerobic granular sludge. J. Environ. Manag. 298, 113521 (2021)

    Article  CAS  Google Scholar 

  41. Wang, H., Song, Q., Wang, J., Zhang, H., He, Q., Zhang, W., Li, H.: Simultaneous nitrification, denitrification and phosphorus removal in an aerobic granular sludge sequencing batch reactor with high dissolved oxygen: effects of carbon to nitrogen ratios. Sci. Total Environ. 642, 1145–1152 (2018)

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Weissbrodt, D.G., Neu, T.R., Kuhlicke, U., Rappaz, Y., Holliger, C.: Assessment of bacterial and structural dynamics in aerobic granular biofilms. Front. Microbiol. 4, 175 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  43. Winkler, M.K.H., Meunier, C., Henriet, O., Mahillon, J., Suárez-Ojeda, M.E., Del Moro, G., Weissbrodt, D.G.: An integrative review of granular sludge for the biological removal of nutrients and recalcitrant organic matter from wastewater. Chem. Eng. J. 336, 489–502 (2018)

    Article  CAS  Google Scholar 

  44. Zhang, C., Zhang, H., Yang, F.: Optimal cultivation of simultaneous ammonium and phosphorus removal aerobic granular sludge in A/O/A sequencing batch reactor and the assessment of functional organisms. Environ. Technol. 35(15), 1979–1988 (2014)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

“The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.”

Author information

Authors and Affiliations

Authors

Contributions

“All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [MR] and [MAK]. The first draft of the manuscript was written by [MR] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.”

Corresponding author

Correspondence to Fehmeeda Khatoon.

Ethics declarations

Conflict of Interest

“The authors have no relevant financial or non-financial interests to disclose.”

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rayaz, M., Khan, M.A., Khan, A.A. et al. Start-up of Aerobic Granular Biomass System: Fate of Organics and Nutrients Removal From Anaerobic Effluent. Waste Biomass Valor 15, 945–958 (2024). https://doi.org/10.1007/s12649-023-02198-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02198-1

Keywords

Navigation