Skip to main content
Log in

Impact of Substrate Biodegradability on the Identification of Endogenous Compounds During Anaerobic Digestion

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Efforts to characterize the organic matter (OM) properties in anaerobic digestates, comprising recalcitrant substrate (exogenous) and microbial-derived (endogenous) compounds, require further investigation. This study evaluated the identification of endogenous compounds during the anaerobic digestion (AD) of well-defined substrates with a subsequent starvation period. Substrates with different biodegradability levels and inocula from diverse origins were tested. Then, the digested OM was analyzed via ISBAMO fractionation and mid-infrared spectroscopy. The analysis of extracted fractions from the particulate OM of the inoculum revealed potential transfers of compounds to the dissolved OM after AD. The fluorescence complexity index of the dissolved OM fraction globally increased after AD and starvation periods when simple substrates were employed. Blank tests indicated that this increase was likely due to prolonged endogenous phases. Contrarily, partially biodegradable substrates accumulated slowly biodegradable protein-like and impeded the identification of soluble microbial products (SMP) via 3D fluorescence regardless of the inoculum type. Despite the systems fed with fully biodegradable substrates enabled the characterization of SMP, their profiles were influenced by multiple factors such as the substrate and inoculum type, as well as the digestion period. However, the impact of the selected substrates on the particulate OM was not detectable using Fourier transform infrared spectroscopy ratios or ISBAMO fractionation. Overall, the identification of endogenous compounds during anaerobic biodegradation was explored, contributing to a better understanding of the composition of digestates that could be valorized.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data that support the findings of this study are available from the corresponding author on reasonable request.

Abbreviations

3D:

Three dimensional

AD:

Anaerobic digestion

BMP:

Biochemical methane potential

C:

Carbon

COD:

Chemical oxygen demand

DOM:

Dissolved Organic Matter

EEM:

Excitation emission matrix

EPS:

Extracellular polymeric substances

FCI:

Fluorescence complexity index

GA:

Glutamic acid

GL:

Glucose

NEOM:

Non-Extractable Organic Matter

OFMSW:

Organic fraction of municipal solid waste

OM:

Organic matter

PEOM:

Poorly Extractable Organic Matter

POM:

Particulate Organic Matter

REOM:

Readily Extractable Organic Matter

Pf(i):

Fluorescence proportion for a zone (i)

SEOM:

Slowly Extractable Organic Matter

SM:

Synthetic mixture

SPOM:

Extractable Soluble from Particulate Organic Matter

TS:

Total solids

Vf (i):

Fluorescence volume for a zone (i)

VS:

Volatile solids

WP:

Whey protein

References

  1. Astals, S., José Chávez-Fuentes, J., Capson-Tojo, G., Hutňan, M., Jensen, P.D.: The interaction between lipids and ammoniacal nitrogen mitigates inhibition in mesophilic anaerobic digestion. Waste Manag. 136, 244–252 (2021). https://doi.org/10.1016/j.wasman.2021.10.015

    Article  CAS  PubMed  Google Scholar 

  2. Tambone, F., Adani, F., Gigliotti, G., Volpe, D., Fabbri, C., Provenzano, M.R.: Organic matter characterization during the anaerobic digestion of different biomasses by means of CPMAS 13C NMR spectroscopy. Biomass Bioenergy. 48, 111–120 (2013). https://doi.org/10.1016/j.biombioe.2012.11.006

    Article  CAS  Google Scholar 

  3. Guilayn, F., Jimenez, J., Martel, J.-L., Rouez, M., Crest, M., Patureau, D.: First fertilizing-value typology of digestates: a decision-making tool for regulation. Waste Manag. 86, 67–79 (2019). https://doi.org/10.1016/j.wasman.2019.01.032

    Article  CAS  PubMed  Google Scholar 

  4. Ekstrand, E.-M., Björn, A., Karlsson, A., Schnürer, A., Kanders, L., Yekta, S.S., Karlsson, M., Moestedt, J.: Identifying targets for increased biogas production through chemical and organic matter characterization of digestate from full-scale biogas plants: what remains and why? Biotechnol. Biofuels Bioprod. 15, 16 (2022). https://doi.org/10.1186/s13068-022-02103-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fernández-Domínguez, D., Yekta, S.S., Hedenström, M., Patureau, D., Jimenez, J.: Deciphering the contribution of microbial biomass to the properties of dissolved and particulate organic matter in anaerobic digestates. Sci. Total Environ. 877, 162882 (2023). https://doi.org/10.1016/j.scitotenv.2023.162882

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Lesteur, M., Latrille, E., Maurel, V.B., Roger, J.M., Gonzalez, C., Junqua, G., Steyer, J.P.: First step towards a fast analytical method for the determination of Biochemical Methane Potential of solid wastes by near infrared spectroscopy. Bioresour. Technol. 102, 2280–2288 (2011). https://doi.org/10.1016/j.biortech.2010.10.044

    Article  CAS  PubMed  Google Scholar 

  7. Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., Bougrier, C., Buffière, P., Carballa, M., de Wilde, V., Ebertseder, F., Fernández, B., Ficara, E., Fotidis, I., Frigon, J.-C., de Laclos, H.F., Ghasimi, D.S.M., Hack, G., Hartel, M., Heerenklage, J., Horvath, I.S., Jenicek, P., Koch, K., Krautwald, J., Lizasoain, J., Liu, J., Mosberger, L., Nistor, M., Oechsner, H., Oliveira, J.V., Paterson, M., Pauss, A., Pommier, S., Porqueddu, I., Raposo, F., Ribeiro, T., Rüsch Pfund, F., Strömberg, S., Torrijos, M., van Eekert, M., van Lier, J., Wedwitschka, H., Wierinck, I.: Towards a standardization of biomethane potential tests. Water Sci. Technol. 74, 2515–2522 (2016). https://doi.org/10.2166/wst.2016.336

  8. Jimenez, J., Gonidec, E., Cacho Rivero, J.A., Latrille, E., Vedrenne, F., Steyer, J.-P.: Prediction of anaerobic biodegradability and bioaccessibility of municipal sludge by coupling sequential extractions with fluorescence spectroscopy: towards ADM1 variables characterization. Water Res. 50, 359–372 (2014). https://doi.org/10.1016/j.watres.2013.10.048

    Article  CAS  PubMed  Google Scholar 

  9. Shakeri Yekta, S., Hedenström, M., Svensson, B.H., Sundgren, I., Dario, M., Enrich-Prast, A., Hertkorn, N., Björn, A.: Molecular characterization of particulate organic matter in full scale anaerobic digesters: an NMR spectroscopy study. Sci. Total Environ. 685, 1107–1115 (2019). https://doi.org/10.1016/j.scitotenv.2019.06.264

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Spence, A.: Degradation of microbial proteins—molecular-scale understanding of the forms and dynamics of organic nitrogen in soils. Chem. Data Collect. 11–12, 108–118 (2017). https://doi.org/10.1016/j.cdc.2017.08.007

    Article  Google Scholar 

  11. Salangsang, M.C.D., Sekine, M., Akizuki, S., Sakai, H.D., Kurosawa, N., Toda, T.: Effect of carbon to nitrogen ratio of food waste and short resting period on microbial accumulation during anaerobic digestion. Biomass Bioenergy. 162, 106481 (2022). https://doi.org/10.1016/j.biombioe.2022.106481

    Article  CAS  Google Scholar 

  12. Soh, Y.N.A., Kunacheva, C., Webster, R.D., Stuckey, D.C.: Identification of the production and biotransformational changes of soluble microbial products (SMP) in wastewater treatment processes: a short review. Chemosphere 251, 126391 (2020). https://doi.org/10.1016/j.chemosphere.2020.126391

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Ramdani, A., Dold, P., Déléris, S., Lamarre, D., Gadbois, A., Comeau, Y.: Biodegradation of the endogenous residue of activated sludge. Water Res. 44, 2179–2188 (2010). https://doi.org/10.1016/j.watres.2009.12.037

    Article  CAS  PubMed  Google Scholar 

  14. Ruscalleda, M., Seredynska-Sobecka, B., Ni, B.-J., Arvin, E., Balaguer, M.D., Colprim, J., Smets, B.F.: Spectrometric characterization of the effluent dissolved organic matter from an anammox reactor shows correlation between the EEM signature and anammox growth. Chemosphere 117, 271–277 (2014). https://doi.org/10.1016/j.chemosphere.2014.07.036

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Maqbool, T., Cho, J., Hur, J.: Spectroscopic descriptors for dynamic changes of soluble microbial products from activated sludge at different biomass growth phases under prolonged starvation. Water Res. 123, 751–760 (2017). https://doi.org/10.1016/j.watres.2017.07.033

    Article  CAS  PubMed  Google Scholar 

  16. Hou, X., Liu, S., Feng, Y.: The autofluorescence characteristics of bacterial intracellular and extracellular substances during the operation of anammox reactor. Sci. Rep. 7, 39289 (2017). https://doi.org/10.1038/srep39289

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Li, W.-H., Sheng, G.-P., Lu, R., Yu, H.-Q., Li, Y.-Y., Harada, H.: Fluorescence spectral characteristics of the supernatants from an anaerobic hydrogen-producing bioreactor. Appl. Microbiol. Biotechnol. 89, 217–224 (2011). https://doi.org/10.1007/s00253-010-2867-x

    Article  CAS  PubMed  Google Scholar 

  18. Shao, L., Wang, T., Li, T., Lü, F., He, P.: Comparison of sludge digestion under aerobic and anaerobic conditions with a focus on the degradation of proteins at mesophilic temperature. Bioresour. Technol. 140, 131–137 (2013). https://doi.org/10.1016/j.biortech.2013.04.081

    Article  CAS  PubMed  Google Scholar 

  19. Wang, S., Yuan, R., Chen, H., Wang, F., Zhou, B.: Effect of sulfonamides on the dissolved organic matter fluorescence in biogas slurry during anaerobic fermentation according to the PARAFAC analysis. Process Saf. Environ. Prot. 144, 253–262 (2020). https://doi.org/10.1016/j.psep.2020.07.033

    Article  CAS  Google Scholar 

  20. Su, L., Chen, M., Wang, S., Ji, R., Liu, C., Lu, X., Zhen, G., Zhang, L.: Fluorescence characteristics of dissolved organic matter during anaerobic digestion of oil crop straw inoculated with rumen liquid. RSC Adv. 11, 14347–14356 (2021). https://doi.org/10.1039/D1RA01176F

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Aquino, S.F., Stuckey, D.C.: Integrated model of the production of soluble microbial products (SMP) and extracellular polymeric substances (EPS) in anaerobic chemostats during transient conditions. Biochem. Eng. J. 38, 138–146 (2008). https://doi.org/10.1016/j.bej.2007.06.010

    Article  CAS  Google Scholar 

  22. Magdalena, J.A., Tomás-Pejó, E., González-Fernández, C.: Volatile fatty acids production from microalgae biomass: anaerobic digester performance and population dynamics during stable conditions, starvation, and process recovery. Molecules 24, 4544 (2019). https://doi.org/10.3390/molecules24244544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ly, Q.V., Nghiem, L.D., Cho, J., Maqbool, T., Hur, J.: Organic carbon source-dependent properties of soluble microbial products in sequencing batch reactors and its effects on membrane fouling. J. Environ. Manage. 244, 40–47 (2019). https://doi.org/10.1016/j.jenvman.2019.05.045

    Article  CAS  PubMed  Google Scholar 

  24. Mesquita, P.L., Aquino, S.F., Xavier, A.L.P., da Silva, J.C.C., Afonso, R.C.F., Silva, S.Q.: Soluble microbial product (SMP) characterization in bench-scale aerobic and anaerobic CSTRs under different operational conditions. Braz. J. Chem. Eng. 27, 101–111 (2010). https://doi.org/10.1590/S0104-66322010000100009

    Article  CAS  Google Scholar 

  25. Le, C., Stuckey, D.C.: Impact of feed carbohydrates and nitrogen source on the production of soluble microbial products (SMPs) in anaerobic digestion. Water Res. 122, 10–16 (2017). https://doi.org/10.1016/j.watres.2017.05.061

    Article  CAS  PubMed  Google Scholar 

  26. Jimenez, J., Aemig, Q., Doussiet, N., Steyer, J.-P., Houot, S., Patureau, D.: A new organic matter fractionation methodology for organic wastes: bioaccessibility and complexity characterization for treatment optimization. Bioresour. Technol. 194, 344–353 (2015). https://doi.org/10.1016/j.biortech.2015.07.037

    Article  CAS  PubMed  Google Scholar 

  27. Jimenez, J., Lei, H., Steyer, J.-P., Houot, S., Patureau, D.: Methane production and fertilizing value of organic waste: organic matter characterization for a better prediction of valorization pathways. Bioresour. Technol. 241, 1012–1021 (2017). https://doi.org/10.1016/j.biortech.2017.05.176

    Article  CAS  PubMed  Google Scholar 

  28. Fernández-Domínguez, D., Patureau, D., Houot, S., Sertillanges, N., Zennaro, B., Jimenez, J.: Prediction of organic matter accessibility and complexity in anaerobic digestates. Waste Manag. 136, 132–142 (2021). https://doi.org/10.1016/j.wasman.2021.10.004

    Article  CAS  PubMed  Google Scholar 

  29. Maynaud, G., Druilhe, C., Daumoin, M., Jimenez, J., Patureau, D., Torrijos, M., Pourcher, A.-M., Wéry, N.: Characterisation of the biodegradability of post-treated digestates via the chemical accessibility and complexity of organic matter. Bioresour. Technol. 231, 65–74 (2017). https://doi.org/10.1016/j.biortech.2017.01.057

    Article  CAS  PubMed  Google Scholar 

  30. Fernández-Domínguez, D., Guilayn, F., Patureau, D., Jimenez, J.: Characterising the stability of the organic matter during anaerobic digestion: a selective review on the major spectroscopic techniques. Rev. Environ. Sci. Biotechnol. (2022). https://doi.org/10.1007/s11157-022-09623-2

    Article  Google Scholar 

  31. Bekiaris, G., Bruun, S., Peltre, C., Houot, S., Jensen, L.S.: FTIR–PAS: a powerful tool for characterising the chemical composition and predicting the labile C fraction of various organic waste products. Waste Manag. 39, 45–56 (2015). https://doi.org/10.1016/j.wasman.2015.02.029

    Article  CAS  PubMed  Google Scholar 

  32. Das, S., Raj, R., Mangwani, N., Dash, H.R., Chakraborty, J.: 2—Heavy metals and hydrocarbons: adverse effects and mechanism of Toxicity. In: Das, S. (ed.) Microbial biodegradation and bioremediation, pp. 23–54. Elsevier, Oxford (2014)

    Chapter  Google Scholar 

  33. Lesteur, M., Bellon-Maurel, V., Gonzalez, C., Latrille, E., Roger, J.M., Junqua, G., Steyer, J.P.: Alternative methods for determining anaerobic biodegradability: a review. Process Biochem. 45, 431–440 (2010). https://doi.org/10.1016/j.procbio.2009.11.018

    Article  CAS  Google Scholar 

  34. Angelidaki, I., Sanders, W.: Assessment of the anaerobic biodegradability of macropollutants. Rev. Environ. Sci. Biotechnol. 3, 117–129 (2004). https://doi.org/10.1007/s11157-004-2502-3

    Article  CAS  Google Scholar 

  35. Astals, S., Batstone, D.J., Mata-Alvarez, J., Jensen, P.D.: Identification of synergistic impacts during anaerobic co-digestion of organic wastes. Bioresour. Technol. 169, 421–427 (2014). https://doi.org/10.1016/j.biortech.2014.07.024

    Article  CAS  PubMed  Google Scholar 

  36. APHA: Standard Methods for the Examination of Water and Waste-Water, 22nd edn. APHA, Washington (2005)

    Google Scholar 

  37. Aemig, Q., Chéron, C., Delgenès, N., Jimenez, J., Houot, S., Steyer, J.-P., Patureau, D.: Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in sludge organic matter pools as a driving force of their fate during anaerobic digestion. Waste Manag. 48, 389–396 (2016). https://doi.org/10.1016/j.wasman.2015.11.045

    Article  CAS  PubMed  Google Scholar 

  38. Hodgkins, S.B., Richardson, C.J., Dommain, R., Wang, H., Glaser, P.H., Verbeke, B., Winkler, B.R., Cobb, A.R., Rich, V.I., Missilmani, M., Flanagan, N., Ho, M., Hoyt, A.M., Harvey, C.F., Vining, S.R., Hough, M.A., Moore, T.R., Richard, P.J.H., De La Cruz, F.B., Toufaily, J., Hamdan, R., Cooper, W.T., Chanton, J.P.: Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. Nat. Commun. 9, 3640 (2018). https://doi.org/10.1038/s41467-018-06050-2

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Development Core Team, R.: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2021)

    Google Scholar 

  40. Bond, T., Brouckaert, C.J., Foxon, K.M., Buckley, C.A.: A critical review of experimental and predicted methane generation from anaerobic codigestion. Water Sci. Technol. 65, 183–189 (2012). https://doi.org/10.2166/wst.2011.845

    Article  CAS  PubMed  Google Scholar 

  41. El Asri, O., Afilal, M.E.: Comparison of the experimental and theoretical production of biogas by monosaccharides, disaccharides, and amino acids. Int. J. Environ. Sci. Technol. 15, 1957–1966 (2018). https://doi.org/10.1007/s13762-017-1570-1

    Article  CAS  Google Scholar 

  42. Provenzano, M.R., Iannuzzi, G., Fabbri, C., Senesi, N.: Qualitative characterization and differentiation of digestates from different biowastes using FTIR and fluorescence spectroscopies. J. Environ. Prot. 2, 83–89 (2011). https://doi.org/10.4236/jep.2011.21009

    Article  CAS  Google Scholar 

  43. Ni, B.-J., Zeng, R.J., Fang, F., Xie, W.-M., Sheng, G.-P., Yu, H.-Q.: Fractionating soluble microbial products in the activated sludge process. Water Res. 44, 2292–2302 (2010). https://doi.org/10.1016/j.watres.2009.12.025

    Article  CAS  PubMed  Google Scholar 

  44. Kunacheva, C., Soh, Y.N.A., Stuckey, D.C.: Identification of soluble microbial products (SMPs) from the fermentation and methanogenic phases of anaerobic digestion. Sci. Total Environ. 698, 134177 (2020). https://doi.org/10.1016/j.scitotenv.2019.134177

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Aemig, Q., Doussiet, N., Danel, A., Delgenès, N., Jimenez, J., Houot, S., Patureau, D.: Organic micropollutants’ distribution within sludge organic matter fractions explains their dynamic during sewage sludge anaerobic digestion followed by composting. Environ. Sci. Pollut. Res. 26, 5820–5830 (2019). https://doi.org/10.1007/s11356-018-4014-7

    Article  CAS  Google Scholar 

  46. Somers, M.H., Jimenez, J., Azman, S., Steyer, J.-P., Baeyens, J., Appels, L.: Ultrasonication affects the bio-accessibility of primary dairy cow manure digestate for secondary post-digestion. Fuel 291, 120140 (2021). https://doi.org/10.1016/j.fuel.2021.120140

    Article  CAS  Google Scholar 

  47. Laera, A., Shakeri Yekta, S., Hedenström, M., Buzier, R., Guibaud, G., Dario, M., Esposito, G., van Hullebusch, E.D.: A simultaneous assessment of organic matter and trace elements bio-accessibility in substrate and digestate from an anaerobic digestion plant. Bioresour. Technol. 288, 121587 (2019). https://doi.org/10.1016/j.biortech.2019.121587

    Article  CAS  PubMed  Google Scholar 

  48. Alassali, A., Moon, H., Picuno, C., Meyer, R.S.A., Kuchta, K.: Assessment of polyethylene degradation after aging through anaerobic digestion and composting. Polym. Degrad. Stab. 158, 14–25 (2018). https://doi.org/10.1016/j.polymdegradstab.2018.10.014

    Article  CAS  Google Scholar 

  49. Guilayn, F.: A R package for processing, plotting and integrating fluorescence excitation-emission matrices. https://doi.org/10.5281/zenodo.2532793 (2018)

  50. Zhang, Y., Xu, S., Cui, M., Wong, J.W.C.: Effects of different thermal pretreatments on the biodegradability and bioaccessibility of sewage sludge. Waste Manag. 94, 68–76 (2019). https://doi.org/10.1016/j.wasman.2019.05.047

    Article  CAS  PubMed  Google Scholar 

  51. Dai, X., Luo, F., Dai, L., Dong, B.: Degradation of Extracellular Polymeric Substances (EPS) in Anaerobic digestion of dewatered sludge. Procedia Environ. Sci. 18, 515–521 (2013). https://doi.org/10.1016/j.proenv.2013.04.069

    Article  CAS  Google Scholar 

  52. Li, X., Dai, X., Takahashi, J., Li, N., Jin, J., Dai, L., Dong, B.: New insight into chemical changes of dissolved organic matter during anaerobic digestion of dewatered sewage sludge using EEM-PARAFAC and two-dimensional FTIR correlation spectroscopy. Bioresour. Technol. 159, 412–420 (2014). https://doi.org/10.1016/j.biortech.2014.02.085

    Article  CAS  PubMed  Google Scholar 

  53. Provenzano, M.R., Cavallo, O., Malerba, A.D., Fabbri, C., Zaccone, C.: Unravelling (maize silage) digestate features throughout a full-scale plant: a spectroscopic and thermal approach. J. Clean. Prod. 193, 372–378 (2018). https://doi.org/10.1016/j.jclepro.2018.05.081

    Article  CAS  Google Scholar 

  54. Whitmore, T.N., Etheridge, S.P., Stafford, D.A., Leroff, U.E.A., Hughes, D.: The evaluation of anaerobic digester performance by coenzyme F420 analysis. Biomass. 9, 29–35 (1986). https://doi.org/10.1016/0144-4565(86)90010-7

    Article  CAS  Google Scholar 

  55. Wan, S., Xi, B., Xia, X., Li, M., Lv, D., Wang, L., Song, C.: Using fluorescence excitation–emission matrix spectroscopy to monitor the conversion of organic matter during anaerobic co-digestion of cattle dung and duck manure. Bioresour. Technol. 123, 439–444 (2012). https://doi.org/10.1016/j.biortech.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  56. Wu, Y., Du, H., Li, F., Su, H., Bhat, S.A., Hudori, H., Rosadi, M.Y., Arsyad, F., Lu, Y., Wu, H.: Effect of adding drinking water treatment sludge on excess activated sludge digestion process. Sustainability. 12, 6953 (2020). https://doi.org/10.3390/su12176953

    Article  CAS  Google Scholar 

  57. Auxenfans, T., Terryn, C., Paës, G.: Seeing biomass recalcitrance through fluorescence. Sci. Rep. 7, 8838 (2017). https://doi.org/10.1038/s41598-017-08740-1

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  58. Peces, M., Astals, S., Jensen, P.D., Clarke, W.P.: Deterministic mechanisms define the long-term anaerobic digestion microbiome and its functionality regardless of the initial microbial community. Water Res. 141, 366–376 (2018). https://doi.org/10.1016/j.watres.2018.05.028

    Article  CAS  PubMed  Google Scholar 

  59. Shi, X., Guo, X., Zuo, J., Wang, Y., Zhang, M.: A comparative study of thermophilic and mesophilic anaerobic co-digestion of food waste and wheat straw: process stability and microbial community structure shifts. Waste Manag. 75, 261–269 (2018). https://doi.org/10.1016/j.wasman.2018.02.004

    Article  CAS  PubMed  Google Scholar 

  60. Maqbool, T., Quang, V.L., Cho, J., Hur, J.: Characterizing fluorescent dissolved organic matter in a membrane bioreactor via excitation–emission matrix combined with parallel factor analysis. Bioresour. Technol. 209, 31–39 (2016). https://doi.org/10.1016/j.biortech.2016.02.089

    Article  CAS  PubMed  Google Scholar 

  61. He, X.-S., Xi, B.-D., Wei, Z.-M., Jiang, Y.-H., Yang, Y., An, D., Cao, J.-L., Liu, H.-L.: Fluorescence excitation–emission matrix spectroscopy with regional integration analysis for characterizing composition and transformation of dissolved organic matter in landfill leachates. J. Hazard. Mater. 190, 293–299 (2011). https://doi.org/10.1016/j.jhazmat.2011.03.047

    Article  CAS  PubMed  Google Scholar 

  62. Zhao, J., Li, Y., Chen, X., Li, Y.: Effects of carbon sources on sludge performance and microbial community for 4-chlorophenol wastewater treatment in sequencing batch reactors. Bioresour. Technol. 255, 22–28 (2018). https://doi.org/10.1016/j.biortech.2018.01.106

    Article  CAS  PubMed  Google Scholar 

  63. Ly, Q.V., Nghiem, L.D., Sibag, M., Maqbool, T., Hur, J.: Effects of COD/N ratio on soluble microbial products in effluent from sequencing batch reactors and subsequent membrane fouling. Water Res. 134, 13–21 (2018). https://doi.org/10.1016/j.watres.2018.01.024

    Article  CAS  PubMed  Google Scholar 

  64. Dong, F., Zhao, Q.-B., Zhao, J.-B., Sheng, G.-P., Tang, Y., Tong, Z.-H., Yu, H.-Q., Li, Y.-Y., Harada, H.: Monitoring the restart-up of an upflow anaerobic sludge blanket (UASB) reactor for the treatment of a soybean processing wastewater. Bioresour. Technol. 101, 1722–1726 (2010). https://doi.org/10.1016/j.biortech.2009.10.011

    Article  CAS  PubMed  Google Scholar 

  65. Zhou, Z., Meng, F., Liang, S., Ni, B.-J., Jia, X., Li, S., Song, Y., Huang, G.: Role of microorganism growth phase in the accumulation and characteristics of biomacromolecules (BMM) in a membrane bioreactor. RSC Adv. 2, 453–460 (2011). https://doi.org/10.1039/C1RA00420D

    Article  ADS  Google Scholar 

  66. Li, W.-H., Sheng, G.-P., Liu, X.-W., Yu, H.-Q.: Characterizing the extracellular and intracellular fluorescent products of activated sludge in a sequencing batch reactor. Water Res. 42, 3173–3181 (2008). https://doi.org/10.1016/j.watres.2008.03.010

    Article  CAS  PubMed  Google Scholar 

  67. Jarusutthirak, C., Amy, G.: Understanding soluble microbial products (SMP) as a component of effluent organic matter (EfOM). Water Res. 41, 2787–2793 (2007). https://doi.org/10.1016/j.watres.2007.03.005

    Article  CAS  PubMed  Google Scholar 

  68. Laspidou, C.S., Rittmann, B.E.: A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res. 36, 2711–2720 (2002). https://doi.org/10.1016/S0043-1354(01)00413-4

    Article  CAS  PubMed  Google Scholar 

  69. Rosadi, M.Y., Yamada, T., Hudori, H., Tamaoki, H., Li, F.: Characterization of dissolved organic matter extracted from water treatment sludge. Water Supply. 20, 2194–2205 (2020). https://doi.org/10.2166/ws.2020.120

    Article  CAS  Google Scholar 

  70. Tang, Y., Li, X., Dong, B., Huang, J., Wei, Y., Dai, X., Dai, L.: Effect of aromatic repolymerization of humic acid-like fraction on digestate phytotoxicity reduction during high-solid anaerobic digestion for stabilization treatment of sewage sludge. Water Res. 143, 436–444 (2018). https://doi.org/10.1016/j.watres.2018.07.003

    Article  CAS  PubMed  Google Scholar 

  71. Liu, R., Hao, X., van Loosdrecht, M.C.M., Zhou, P., Li, J.: Dynamics of humic substance composition during anaerobic digestion of excess activated sludge. Int. Biodeterior. Biodegrad. 145, 104771 (2019). https://doi.org/10.1016/j.ibiod.2019.104771

    Article  CAS  Google Scholar 

  72. Cuetos, M.J., Gómez, X., Otero, M., Morán, A.: Anaerobic digestion of solid slaughterhouse waste: study of biological stabilization by Fourier Transform infrared spectroscopy and thermogravimetry combined with mass spectrometry. Biodegradation 21, 543–556 (2010). https://doi.org/10.1007/s10532-009-9322-7

    Article  CAS  PubMed  Google Scholar 

  73. Kataki, S., Hazarika, S., Baruah, D.C.: Investigation on by-products of bioenergy systems (anaerobic digestion and gasification) as potential crop nutrient using FTIR, XRD, SEM analysis and phyto-toxicity test. J. Environ. Manage. 196, 201–216 (2017). https://doi.org/10.1016/j.jenvman.2017.02.058

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the French Occitanie Region (No. 00004786-24001447) and the French National Research Institute for Agriculture, Food and Environment (INRAE). David Fernández-Domínguez is thankful to Ali Dabestani Rahmatabad for his assistance.

Funding

This study was financially supported by the French Occitanie Region (No. 00004786-24001447) and the French National Research Institute for Agriculture, Food and Environment (INRAE).

Author information

Authors and Affiliations

Authors

Contributions

DF-D: conceptualization, methodology, software, validation, formal analysis, investigation, data curation, writing—original draft, writing—review and editing, visualization. DP: conceptualization, methodology, resources, writing—review and editing, supervision, funding acquisition. JJ: conceptualization, methodology, resources, writing—review and editing, supervision, funding acquisition.

Corresponding author

Correspondence to David Fernández-Domínguez.

Ethics declarations

Conflict of Interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14450 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Domínguez, D., Patureau, D. & Jimenez, J. Impact of Substrate Biodegradability on the Identification of Endogenous Compounds During Anaerobic Digestion. Waste Biomass Valor 15, 885–901 (2024). https://doi.org/10.1007/s12649-023-02197-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02197-2

Keywords

Navigation