Skip to main content
Log in

Pyrolysis of Palm Fronds Waste into Bio-Oil and Upgrading Process Via Esterification-Hydrodeoxygenation Using Cu–Zn Metal Oxide Catalyst Loaded on Mordenite Zeolite

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Bio-oil from the pyrolysis of palm fronds waste has potential to be used as an alternative fuel. However, due to its poor physicochemical properties, it requires further treatment to improve its overall quality. In this study, the conversion of palm fronds waste into bio-oil was carried out using the semi-fast pyrolysis at 500 °C and continued with esterification and hydrodeoxygenation (HDO). Metal oxides of Cu and Zn with a zeolite carrier mordenite (Mor) were used as bifunctional catalysts in the HDO reaction performed in a fixed-bed system reactor with temperature variations (250, 300, and 350 °C) for 2 h. Upgraded bio-oil (UBO) products at optimum conditions were analyzed for their physicochemical properties. In the pyrolysis process, the highest bio-oil conversion of 46.3% was obtained at a sample size of 60 mesh with the main component of furan compounds (46.31%). In the upgrading process through the esterification pretreatment, the optimum condition of HDO was determined to be at 300 °C, this can be seen from the high yield of liquid phase products produced on each catalyst (Mor; 89.85%, and CuO-ZnO/Mor; 88.25%). The physicochemical properties of upgraded bio-oil obtained under optimum conditions showed an increase in the quality of bio-oil with a decrease in water content (up to 23%), an increase in higher heating value (HHV) (up to 14.67% in CuO-ZnO/Mor). It is known that HDO with CuO-ZnO/Mor catalyst has a higher selectivity than Mor catalyst in converting aromatic hydrocarbon compounds such as methyl cyclohexane which is a potential component of a fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Liu, Y., Li, Z., Leahy, J.J., Kwapinski, W.: Catalytically upgrading bio-oil via esterification. Energy Fuels 29, 3691–3698 (2015). https://doi.org/10.1021/acs.energyfuels.5b00163

    Article  Google Scholar 

  2. Cheng, S., Wei, L., Julson, J., Muthukumarappan, K., Kharel, P.R.: Upgrading pyrolysis bio-oil to biofuel over bifunctional Co-Zn/HZSM-5 catalyst in supercritical methanol. Energy Convers. Manag. 147, 19–28 (2017). https://doi.org/10.1016/j.enconman.2017.05.044

    Article  Google Scholar 

  3. Sembiring, K.C., Rinaldi, N., Simanungkalit, S.P.: Bio-oil from fast pyrolysis of empty fruit bunch at various temperature. Energy Procedia. 65, 162–169 (2015). https://doi.org/10.1016/j.egypro.2015.01.052

    Article  Google Scholar 

  4. Wang, G., Dai, Y., Yang, H., Xiong, Q., Wang, K., Zhou, J., Li, Y., Wang, S.: A review of recent advances in biomass pyrolysis. Energy Fuels 34, 15557–15578 (2020). https://doi.org/10.1021/acs.energyfuels.0c03107

    Article  Google Scholar 

  5. Uzun, B.B., Pütün, A.E., Pütün, E.: Rapid pyrolysis of olive residue. 1. Effect of heat and mass transfer limitations on product yields and bio-oil compositions. Energy Fuels (2007). https://doi.org/10.1021/ef060171a

    Article  Google Scholar 

  6. Kazawadi, D., Ntalikwa, J., Kombe, G.: A review of intermediate pyrolysis as a technology of biomass conversion for coproduction of biooil and adsorption biochar. J. Renew. Energy. 2021, 1–10 (2021). https://doi.org/10.1155/2021/5533780

    Article  Google Scholar 

  7. Pattiya, A., Suttibak, S.: Production of bio-oil via fast pyrolysis of agricultural residues from cassava plantations in a fluidised-bed reactor with a hot vapour filtration unit. J. Anal. Appl. Pyrolysis. 95, 227–235 (2012). https://doi.org/10.1016/j.jaap.2012.02.010

    Article  Google Scholar 

  8. Kim, S.J., Jung, S.H., Kim, J.S.: Fast pyrolysis of palm kernel shells: Influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds. Bioresour. Technol. 101, 9294–9300 (2010). https://doi.org/10.1016/j.biortech.2010.06.110

    Article  Google Scholar 

  9. Lin, Y.Y., Chen, W.H., Liu, H.C.: Aging and emulsification analyses of hydrothermal liquefaction bio-oil derived from sewage sludge and swine leather residue. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2020.122050

    Article  Google Scholar 

  10. Li, F., Ding, S., Wang, Z., Li, Z., Li, L., Gao, C., Zhong, Z., Lin, H., Chen, C.: Production of light olefins from catalytic cracking bio-oil model compounds over La2O3-modified ZSM-5 zeolite. Energy. Fuels. 32, 5910–5922 (2018). https://doi.org/10.1021/acs.energyfuels.7b04150

    Article  Google Scholar 

  11. Liu, C., Chen, D., Ashok, J., Hongmanorom, P., Wang, W., Li, T., Wang, Z., Kawi, S.: Chemical looping steam reforming of bio-oil for hydrogen-rich syngas production: effect of doping on LaNi0.8Fe0.2O3 perovskite. Int. J. Hydrogen Energy. 45, 21123–21137 (2020)

    Article  Google Scholar 

  12. Zhang, B., Zhang, J., Zhong, Z.: Low-energy mild electrocatalytic hydrogenation of bio-oil using ruthenium anchored in ordered mesoporous carbon. ACS Appl. Energy Mater. 1, 6758–6763 (2018). https://doi.org/10.1021/acsaem.8b01718

    Article  Google Scholar 

  13. Pulungan, A.N., Nurfajriani Kembaren, A., Sihombing, J.L., Ginting, C.V., Nurhamidah, A., Hasibuan, R.: The stabilization of bio-oil as an alternative energy source through hydrodeoxygenation using Co and Co-Mo supported on active natural zeolite. J. Phys. Conf. Ser. (2022). https://doi.org/10.1088/1742-6596/2193/1/012084

    Article  Google Scholar 

  14. Xu, Y., Zhang, L., Lv, W., Wang, C., Wang, C., Zhang, X., Zhang, Q., Ma, L.: Two-step esterification–hydrogenation of bio-oil to alcohols and esters over raney ni catalysts. Catalysts 11, 1–10 (2021). https://doi.org/10.3390/catal11070818

    Article  Google Scholar 

  15. Kadarwati, S., Apriliani, E., Annisa, R.N., Jumaeri, J., Cahyono, E., Wahyuni, S.: Esterification of bio-oil produced from sengon (Paraserianthes falcataria) wood using indonesian natural zeolites. Int. J. Renew. Energy Dev. 10, 747–754 (2021)

    Article  Google Scholar 

  16. Gea, S., Irvan Wijaya, K., Nadia, A., Pulungan, A.N., Sihombing, J.L., Rahayu: Bio-oil hydrodeoxygenation over zeolite-based catalyst: the effect of zeolite activation and nickel loading on product characteristics. Int. J. Energy Environ. Eng. 13, 541–553 (2022)

    Article  Google Scholar 

  17. Cheng, S., Wei, L., Julson, J., Rabnawaz, M.: Upgrading pyrolysis bio-oil through hydrodeoxygenation (HDO) using non-sulfided Fe-Co/SiO2 catalyst. Energy Convers. Manag. 150, 331–342 (2017). https://doi.org/10.1016/j.enconman.2017.08.024

    Article  Google Scholar 

  18. Zhao, X., Wei, L., Cheng, S., Kadis, E., Cao, Y., Boakye, E., Gu, Z., Julson, J.: Hydroprocessing of carinata oil for hydrocarbon biofuel over Mo-Zn/Al2O3. Appl. Catal. B Environ. 196, 41–49 (2016). https://doi.org/10.1016/j.apcatb.2016.05.020

    Article  Google Scholar 

  19. Cheng, S., Wei, L., Julson, J., Muthukumarappan, K., Kharel, P.R., Cao, Y., Boakye, E., Raynie, D., Gu, Z.: Hydrodeoxygenation upgrading of pine sawdust bio-oil using zinc metal with zero valency. J. Taiwan Inst. Chem. Eng. 74, 146–153 (2017). https://doi.org/10.1016/j.jtice.2017.02.011

    Article  Google Scholar 

  20. Pourzolfaghar, H., Abnisa, F., Wan Daud, W.M.A., Aroua, M.K.: Gas-phase hydrodeoxygenation of phenol over Zn/SiO2 catalysts: effects of zinc load, temperature, weight hourly space velocity, and H2 volumetric flow rate. Biomass. Bioene. (2020). https://doi.org/10.1016/j.biombioe.2020.105556

    Article  Google Scholar 

  21. Zhang, C.H., Yang, Y., Teng, B.T., Li, T.Z., Zheng, H.Y., Xiang, H.W., Li, Y.W.: Study of an iron-manganese Fischer-Tropsch synthesis catalyst promoted with copper. J. Catal. 237, 405–415 (2006). https://doi.org/10.1016/j.jcat.2005.11.004

    Article  Google Scholar 

  22. Li, Y., Zhang, C., Liu, Y., Tang, S., Chen, G., Zhang, R., Tang, X.: Coke formation on the surface of Ni/HZSM-5 and Ni-Cu/HZSM-5 catalysts during bio-oil hydrodeoxygenation. Fuel 189, 23–31 (2017). https://doi.org/10.1016/j.fuel.2016.10.047

    Article  Google Scholar 

  23. Sitthisa, S., Resasco, D.E.: Hydrodeoxygenation of furfural over supported metal catalysts: a comparative study of Cu Pd and Ni. Catal. Letters. 141, 784–791 (2011). https://doi.org/10.1007/s10562-011-0581-7

    Article  Google Scholar 

  24. Oh, S., Ahn, S.H., Choi, J.W.: Effect of different zeolite supported bifunctional catalysts for hydrodeoxygenation of waste wood bio-oil. J. Korean Wood Sci. Technol. 47, 344–359 (2019). https://doi.org/10.5658/WOOD.2019.47.3.344

    Article  Google Scholar 

  25. Guo, K., Ding, Y., Luo, J., Gu, M., Yu, Z.: NiCu bimetallic nanoparticles on silica support for catalytic hydrolysis of ammonia borane: composition-dependent activity and support size effect. ACS Appl. Energy Mater. 2, 5851–5861 (2019). https://doi.org/10.1021/acsaem.9b00997

    Article  Google Scholar 

  26. Muangsuwan, C., Kriprasertkul, W., Ratchahat, S., Liu, C.G., Posoknistakul, P., Laosiripojana, N., Sakdaronnarong, C.: Upgrading of light bio-oil from solvothermolysis liquefaction of an oil palm empty fruit bunch in glycerol by catalytic hydrodeoxygenation using NiMo/Al2O3or CoMo/Al2O3 catalysts. ACS Omega 6, 2999–3016 (2021). https://doi.org/10.1021/acsomega.0c05387

    Article  Google Scholar 

  27. Sihombing, J.L., Gea, S., Wirjosentono, B., Agusnar, H., Pulungan, A.N., Herlinawati, H., Yusuf, M.: Characteristic and catalytic performance of Co and Co-Mo metal impregnated in sarulla natural zeolite catalyst for hydrocracking of MEFA rubber seed oil into biogasoline fraction. Catalysts 10, 121 (2020)

    Article  Google Scholar 

  28. Resende, K.A., Teles, C.A., Jacobs, G., Davis, B.H., Cronauer, D.C., Jeremy Kropf, A., Marshall, C.L., Hori, C.E., Noronha, F.B.: Hydrodeoxygenation of phenol over zirconia supported Pd bimetallic catalysts. The effect of second metal on catalyst performance. Appl. Catal. B Environ. 232, 213–231 (2018)

    Article  Google Scholar 

  29. Hu, L., Wei, X.Y., Kang, Y.H., Guo, X.H., Xu, M.L., Zong, Z.M.: Mordenite-supported ruthenium catalyst for selective hydrodeoxygenation of lignin model compounds and lignin-derived bio-oil to produce cycloalkanes. J. Energy Inst. 96, 269–279 (2021). https://doi.org/10.1016/j.joei.2021.03.017

    Article  Google Scholar 

  30. Kumar, M., Berkson, Z.J., Clark, R.J., Shen, Y., Prisco, N.A., Zheng, Q., Zeng, Z., Zheng, H., McCusker, L.B., Palmer, J.C., Chmelka, B.F., Rimer, J.D.: Crystallization of mordenite platelets using cooperative organic structure-directing agents. J. Am. Chem. Soc. 141, 20155–20165 (2019). https://doi.org/10.1021/jacs.9b09697

    Article  Google Scholar 

  31. Yusniyanti, F., Trisunaryanti, W., Triyono: Acid-alkaline treatment of mordenite and its catalytic activity in the hydrotreatment of bio-oil. Indones. J. Chem. 21, 37–45 (2021)

    Article  Google Scholar 

  32. Narayanan, S., Tamizhdurai, P., Mangesh, V.L., Ragupathi, C., Santhana Krishnan, P., Ramesh, A.: Recent advances in the synthesis and applications of mordenite zeolite: review. RSC Adv. 11, 250–267 (2020)

    Article  Google Scholar 

  33. Hu, L., Wei, X.Y., Zong, Z.M.: Ru/Hβ catalyst prepared by the deposition-precipitation method for enhancing hydrodeoxygenation ability of guaiacol and lignin-derived bio-oil to produce hydrocarbons. J. Energy Inst. 97, 48–57 (2021). https://doi.org/10.1016/j.joei.2021.04.001

    Article  Google Scholar 

  34. Aziz, S.M.A., Wahi, R., Ngaini, Z., Hamdan, S., Yahaya, S.A.: Esterification of microwave pyrolytic oil from palm oil kernel shell. J. Chem. (2017). https://doi.org/10.1155/2017/8359238

    Article  Google Scholar 

  35. Vasconcelos, S.C., Pinhel, L.F.C., Madriaga, V.G.C., Rossa, V., Batinga, L.G.S., Silva, D.S.A., dos Santos, R.D., Soares, A.V.H., Urquieta-González, E.A., Passos, F.B., Varma, R.S., Lima, T.M.: Selective synthesis of levulinic ester from furfural catalyzed by hierarchical zeolites. Catalysts 12, 1–18 (2022). https://doi.org/10.3390/catal12070783

    Article  Google Scholar 

  36. Ahmadian, M., Anbia, M., Rezaie, M.: Sulfur dioxide removal from flue gas by supported CuO nanoparticle adsorbents. Ind. Eng. Chem. Res. 59, 21642–21653 (2020). https://doi.org/10.1021/acs.iecr.0c05629

    Article  Google Scholar 

  37. Karimi Shamsabadi, M., Behpour, M.: Fabricated CuO–ZnO/nanozeolite X heterostructure with enhanced photocatalytic performance: mechanism investigation and degradation pathway. Mater. Sci. Eng. B. Solid-State. Mater. Adv. Technol. 269, 115170 (2021)

    Article  Google Scholar 

  38. Udhaya Sankar, G., Yuvakkumar, R., Ravi, G., Rajkumar, G., Ganesa Moorthy, C.: Preparation of CuO1-x-Mnx(x= 003, 005, 007) and MATLAB modelling for sustainable energy harvesting applications. J. Phys. Conf. Ser. (2021). https://doi.org/10.1088/1742-6596/1850/1/012025

    Article  Google Scholar 

  39. Istadi, I., Prasetyo, S.A., Nugroho, T.S.: Characterization of K2O/CaO-ZnO Catalyst for Transesterification of Soybean Oil to Biodiesel. Procedia Environ. Sci. 23, 394–399 (2015). https://doi.org/10.1016/j.proenv.2015.01.056

    Article  Google Scholar 

  40. Zheng, Y., Wang, J., Li, D., Liu, C., Lu, Y., Lin, X., Zheng, Z.: Activity and selectivity of Ni–Cu bimetallic zeolites catalysts on biomass conversion for bio-aromatic and bio-phenols. J. Energy Inst. 97, 58–72 (2021). https://doi.org/10.1016/j.joei.2021.04.008

    Article  Google Scholar 

  41. Ji, K., Xun, J., Liu, P., Song, Q., Gao, J., Zhang, K., Li, J.: The study of methanol aromatization on transition metal modified ZSM-5 catalyst. Chinese J. Chem. Eng. 26, 1949–1953 (2018). https://doi.org/10.1016/j.cjche.2018.03.024

    Article  Google Scholar 

  42. Zhao, F.W., Zhang, Q., Hui, F., Yuan, J., Mei, S.N., Yu, Q.W., Yang, J.M., Mao, W., Liu, Z.W., Liu, Z.T., Lu, J.: Catalytic behavior of alkali treated H-MOR in selective synthesis of ethylenediamine via condensation amination of monoethanolamine. Catalysts 10, 1–15 (2020). https://doi.org/10.3390/catal10040386

    Article  Google Scholar 

  43. Tang, B., Song, W.C., Li, S.Y., Yang, E.C., Zhao, X.J.: Post-synthesis of Zr-MOR as a robust solid acid catalyst for the ring-opening aminolysis of epoxides. New J. Chem. 42, 13503–13511 (2018). https://doi.org/10.1039/c8nj02449a

    Article  Google Scholar 

  44. Pulungan, A.N., Kembaren, A., Nurfajriani, N., Syuhada, F.A., Sihombing, J.L., Yusuf, M., Rahayu, R.: Biodiesel production from rubber seed oil using natural zeolite supported metal oxide catalysts. Polish J. Environ. Stud. 30, 5681–5689 (2021)

    Google Scholar 

  45. Kurnia, I., Karnjanakom, S., Bayu, A., Yoshida, A., Rizkiana, J., Prakoso, T., Abudula, A., Guan, G.: In-situ catalytic upgrading of bio-oil derived from fast pyrolysis of lignin over high aluminum zeolites. Fuel Process. Technol. 167, 730–737 (2017). https://doi.org/10.1016/j.fuproc.2017.08.026

    Article  Google Scholar 

  46. Kaur, R., Gera, P., Jha, M.K.: Study on effects of different operating parameters on the pyrolysis of biomass: a review. J. Biofuels Bioenergy. 1, 135 (2015). https://doi.org/10.5958/2454-8618.2015.00015.2

    Article  Google Scholar 

  47. Montoya, J.I., Valdés, C., Chejne, F., Gómez, C.A., Blanco, A., Marrugo, G., Osorio, J., Castillo, E., Aristóbulo, J., Acero, J.: Bio-oil production from Colombian bagasse by fast pyrolysis in a fluidized bed: an experimental study. J. Anal. Appl. Pyrolysis. 112, 379–387 (2015). https://doi.org/10.1016/j.jaap.2014.11.007

    Article  Google Scholar 

  48. Bhoi, P.R., Ouedraogo, A.S., Soloiu, V., Quirino, R.: Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis. Sustain. Energy Rev, Renew (2020). https://doi.org/10.1016/j.rser.2019.109676

    Book  Google Scholar 

  49. Ooi, Z.X., Teoh, Y.P., Kunasundari, B., Shuit, S.H.: Oil palm frond as a sustainable and promising biomass source in Malaysia: a review. Environ. Prog. Sustain. Energy. 36, 1864–1874 (2017)

    Article  Google Scholar 

  50. Ansari, K.B., Arora, J.S., Chew, J.W., Dauenhauer, P.J., Mushrif, S.H.: Fast pyrolysis of cellulose, hemicellulose, and lignin: effect of operating temperature on bio-oil yield and composition and insights into the intrinsic pyrolysis chemistry. Ind. Eng. Chem. Res. 58, 15838–15852 (2019). https://doi.org/10.1021/acs.iecr.9b00920

    Article  Google Scholar 

  51. Lucarelli, C., Bonincontro, D., Zhang, Y., Grazia, L., Renom-Carrasco, M., Thieuleux, C., Quadrelli, E.A., Dimitratos, N., Cavani, F., Albonetti, S.: Tandem hydrogenation/hydrogenolysis of furfural to 2-methylfuran over a Fe/Mg/O catalyst: Structure–activity relationship. Catalysts (2019). https://doi.org/10.3390/catal9110895

    Article  Google Scholar 

  52. Chen, D., Cen, K., Zhuang, X., Gan, Z., Zhou, J., Zhang, Y., Zhang, H.: Insight into biomass pyrolysis mechanism based on cellulose, hemicellulose, and lignin: evolution of volatiles and kinetics, elucidation of reaction pathways, and characterization of gas, biochar and bio-oil. Combust. Flame. (2022). https://doi.org/10.1016/j.combustflame.2022.112142

    Article  Google Scholar 

  53. Hu, X., Gholizadeh, M.: Biomass pyrolysis: A review of the process development and challenges from initial researches up to the commercialisation stage. J. Energy Chem. 39, 109–143 (2019). https://doi.org/10.1016/j.jechem.2019.01.024

    Article  Google Scholar 

  54. Hu, S., Jia, H., Ma, J., Hao, W., Li, R.: A hierarchical zeolite microsphere prepared by an eco-friendly and practical route for efficient reaction of bulky molecules. Micropor. Mesopor. Mater. (2020). https://doi.org/10.1016/j.micromeso.2019.109931

    Article  Google Scholar 

  55. Salema, A.A., Ani, F.N.: Microwave-assisted pyrolysis of oil palm shell biomass using an overhead stirrer. J. Anal. Appl. Pyrolysis. 96, 162–172 (2012). https://doi.org/10.1016/j.jaap.2012.03.018

    Article  Google Scholar 

  56. Sakulkit, P., Palamanit, A., Dejchanchaiwong, R., Reubroycharoen, P.: Characteristics of pyrolysis products from pyrolysis and co-pyrolysis of rubber wood and oil palm trunk biomass for biofuel and value-added applications. J. Environ. Chem. Eng. (2020). https://doi.org/10.1016/j.jece.2020.104561

    Article  Google Scholar 

  57. Abatyough, M.T., Ajibola, V.O., Agbaji, E.B., Yashim, Z.I.: Properties of upgraded bio-oil from pyrolysis of waste corn cobs. J. Sustain. Environ. Manag. 1, 120–128 (2022). https://doi.org/10.3126/josem.v1i2.45348

    Article  Google Scholar 

  58. Fekhar, B., Zsinka, V., Miskolczi, N.: Thermo-catalytic co-pyrolysis of waste plastic and paper in batch and tubular reactors for in-situ product improvement. J. Environ. Manage. (2020). https://doi.org/10.1016/j.jenvman.2020.110741

    Article  Google Scholar 

  59. Qureshi, K.M., Kay Lup, A.N., Khan, S., Abnisa, F., Wan Daud, W.M.A.: Optimization of palm shell pyrolysis parameters in helical screw fluidized bed reactor: effect of particle size, pyrolysis time and vapor residence time. Clean. Eng. Technol. 4, 100174 (2021)

    Article  Google Scholar 

  60. Gea, S., Irvan, I., Wijaya, K., Nadia, A., Pulungan, A.N., Sihombing, J.L., Rahayu, R.: Bio-oil hydrodeoxygenation over acid activated-zeolite with different Si/Al ratio. Biofuel. Res. J. 9, 1630–1639 (2022)

    Article  Google Scholar 

  61. Hilten, R.N., Bibens, B.P., Kastner, J.R., Das, K.C.: In-line esterification of pyrolysis vapor with ethanol improves Bio-oil quality. Energy. Fuels. 24, 673–682 (2010). https://doi.org/10.1021/ef900838g

    Article  Google Scholar 

  62. Ahmadi, S., Reyhanitash, E., Yuan, Z., Rohani, S., Xu, C.: (Charles): Upgrading of fast pyrolysis oil via catalytic hydrodeoxygenation: effects of type of solvents. Renew. Energy. 114, 376–382 (2017). https://doi.org/10.1016/j.renene.2017.07.041

    Article  Google Scholar 

  63. Ly, H.V., Kim, J., Hwang, H.T., Choi, J.H., Woo, H.C., Kim, S.S.: Catalytic hydrodeoxygenation of fast pyrolysis bio-oil from saccharina Japonica alga for bio-oil upgrading. Catalysts (2019). https://doi.org/10.3390/catal9121043

    Article  Google Scholar 

  64. Rusli, N.D., Ghani, A.A.A., Mat, K., Yusof, M.T., Zamri-Saad, M., Hassim, H.A.: The potential of pretreated oil palm frond in enhancing rumen degradability and growth performance: a review. Adv. Anim. Vet. Sci. 9, 811–822 (2021)

    Google Scholar 

  65. Pirmoradi, M., Kastner, J.R.: A kinetic model of multi-step furfural hydrogenation over a Pd-TiO2 supported activated carbon catalyst. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2021.128693

    Article  Google Scholar 

  66. Lian, X., Xue, Y., Zhao, Z., Xu, G., Han, S., Yu, H.: Progress on upgrading methods of bio-oil: a review. Int. J. Energy. Res. (2017). https://doi.org/10.1002/er.3726

    Article  Google Scholar 

  67. Si, Z., Zhang, X., Wang, C., Ma, L., Dong, R.: An overview on catalytic hydrodeoxygenation of pyrolysis oil and its model compounds. Catalysts 7, 1–22 (2017). https://doi.org/10.3390/catal7060169

    Article  Google Scholar 

  68. Mortensen, P.M., Grunwaldt, J.D., Jensen, P.A., Jensen, A.D.: Screening of catalysts for hydrodeoxygenation of phenol as a model compound for bio-oil. ACS Catal. 3, 1774–1785 (2013). https://doi.org/10.1021/cs400266e

    Article  Google Scholar 

  69. Mäki-Arvela, P., Murzin, D.Y.: Hydrodeoxygenation of lignin-derived phenols: from fundamental studies towards industrial applications. Catalysts (2017). https://doi.org/10.3390/catal7090265

    Article  Google Scholar 

  70. Lee, H., Kim, H., Yu, M.J., Ko, C.H., Jeon, J.K., Jae, J., Park, S.H., Jung, S.C., Park, Y.K.: Catalytic hydrodeoxygenation of bio-oil model compounds over Pt/HY catalyst. Sci. Rep. 6, 1–8 (2016). https://doi.org/10.1038/srep28765

    Article  Google Scholar 

  71. Li, C., Ma, J., Xiao, Z., Hector, S.B., Liu, R., Zuo, S., Xie, X., Zhang, A., Wu, H., Liu, Q.: Catalytic cracking of Swida wilsoniana oil for hydrocarbon biofuel over Cu-modified ZSM-5 zeolite. Fuel 218, 59–66 (2018). https://doi.org/10.1016/j.fuel.2018.01.026

    Article  Google Scholar 

  72. Ranaware, V., Verma, D., Insyani, R., Riaz, A., Kim, S.M., Kim, J.: Highly-efficient and magnetically-separable ZnO/Co@N-CNTs catalyst for hydrodeoxygenation of lignin and its derived species under mild conditions. Green Chem. 21, 1021–1042 (2019). https://doi.org/10.1039/c8gc03623c

    Article  Google Scholar 

  73. Mortensen, P.M., Grunwaldt, J.D., Jensen, P.A., Knudsen, K.G., Jensen, A.D.: A review of catalytic upgrading of bio-oil to engine fuels. Appl. Catal. A Gen. 407, 1–19 (2011). https://doi.org/10.1016/j.apcata.2011.08.046

    Article  Google Scholar 

Download references

Funding

The authors would like to thank the Institute for Research and Community Service (LPPM) Universitas Negeri Medan for the financial support provided through the collaborative research scheme between institutions and universities with grant number No. 002/UN33.8/PPKM/IKU/2022.

Author information

Authors and Affiliations

Authors

Contributions

ANP: conseptualization, methodology, data curation, investigation, writing—original draft. RG: conseptualization, formal analysis, writing—original draft. FH: formal analysis, data curation, writing—review and editing. LS: formal analysis, writing—review and editing. CS: data curation, writing—review and editing. SG: supervision, data curation, writing—review and editing. MIH: software, investigation, writing—review and editing. JLS: visualization, investigation, writing—original draft. AIYT: supervision, data curation, writing – review and editing.

Corresponding authors

Correspondence to Ahmad Nasir Pulungan or Alfred Iing Yoong Tok.

Ethics declarations

Conflict of Interest

The authors declared that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent fot publication

The authors hereby confirm that all authors mutually agree for submitting their manuscript and that the manuscript is original work of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pulungan, A.N., Goei, R., Harahap, F. et al. Pyrolysis of Palm Fronds Waste into Bio-Oil and Upgrading Process Via Esterification-Hydrodeoxygenation Using Cu–Zn Metal Oxide Catalyst Loaded on Mordenite Zeolite. Waste Biomass Valor 15, 187–206 (2024). https://doi.org/10.1007/s12649-023-02153-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02153-0

Keywords

Navigation