Skip to main content
Log in

Phytochemicals Identification Using GC-MS in Four Extracts of Fruit Peels and Enactment of Extracts Against Pseudomonas Aeruginosa MZ269380

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

A Correction to this article was published on 12 May 2023

This article has been updated

Abstract

Organic wastes constitute a major share of Municipal Solid Wastes. The most beneficial approach to handling such wastes is to recover the bioactive constituents by biovalorization, making full use of them in the food, pharmaceutical as well as cosmetics industry. In this paper, fruit residual waste is collected from the waste of a residential and fruit-juice centre in Purba Medinipur district of West Bengal (India). Physico-chemical analysis of the powder generated from these wastes indicates a heterogeneous nature of powder particles having a diameter ranging from 10 to 55 μm. The moisture content of the powder was nearly 4%. Important minerals like C, K, Ca, N, O, Na, Mg, Zn, Si, P and K were detected in the powder. Four different extracts were prepared from the powder using solvents: ethanol, methanol, petroleum ether and butanol. Biochemical analysis of each extract showed high antioxidant properties. Each extraction was profiled using Gas Chromatography-Mass Spectroscopy analysis to screen the presence of functional bioactive molecules. A total of 33 molecules were identified, among which notable were N-Hexadecanoic acid; Vitamine-E; Squalene; Ergosta-7; Oleic acid; Hexadecane; 1,16-Dichloro etc. Methanol, Ethanol, Petroleum ether and Butanol extracts showed cytotoxic potential against Pseudomonas aeruginosa MZ269380 having MIC (mg/Ml) values of 19.5, 12.5, 24.5 and 8 respectively. Biocompatibility assay of each extract showed no significant damage to goat’s erythrocytes at MIC concentration. Biovalorisation of fruit peels produces useful phytochemicals that can be used in the biomedical, food processing and cosmetics industries.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Schieber, A., Stintzing, F.C., Carle, R.: By-products of plant food processing as a source of functional compounds-recent developments. Trends Food Sci. Technol. 12, 401–413 (2001)

    Article  Google Scholar 

  2. Vilariño, M.A., Carol, F., Caitlin, Q.: Food loss and waste reduction as an integral part of a circular economy. Front. Environ. Sci. 5, 21 (2017)

    Article  Google Scholar 

  3. Salehiyoun, A.R., Sharifi, M., Di Maria, F., et al.: Effect of substituting organic fraction of municipal solid waste with fruit and vegetable wastes on anaerobic digestion. J. Mater. Cycles Waste Manag. 21, 1321–1331 (2019)

    Article  Google Scholar 

  4. Koulakiotis, N.S., Purhonen, P., Gikas, E., Hebert, H., Tsarbopoulos, A.: Crocus-derived compounds alter the aggregation pathway of Alzheimer’s Disease: associated beta amyloid protein. Sci. Rep. 10(1), 18150 (2020)

    Article  Google Scholar 

  5. Zhang, Q.W., Lin, L.G., Ye, W.C.: Techniques for extraction and isolation of natural products: a comprehensive review. Chin. Med. 13, 20–45 (2018)

    Article  Google Scholar 

  6. Abubakar, A.R., Haque, M.: Preparation of Medicinal plants: basic extraction and fractionation procedures for experimental Purposes. J. Pharm. Bioallied Sci. 12(1), 1–10 (2020)

    Article  Google Scholar 

  7. Koffi, E., Sea, T., Dodehe, Y., Soro, S.: Effect of solvent type on extraction of polyphenols from twenty three ivorian plants. J. Anim. Plant. Sci. 5, 550–558 (2010)

    Google Scholar 

  8. Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D.G., Lightfoot, D.A.: Phytochemicals: extraction, isolation, and identification of Bioactive Compounds from Plant extracts. Plants (Basel). 6(4), 42 (2017). doi: https://doi.org/10.3390/plants6040042

    Article  Google Scholar 

  9. Paul, K., Kumpulainen, J., Järvinen, R., Rissanen, H., Heliövaara, M., Reunanen, A., Hakulinen, T.A., Aromaa.: Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 76(3), 560–568 (2002)

    Article  Google Scholar 

  10. David, V., Rodriguez-Mateos, A., Corona, G., Oruna-Concha, M.J., Spencer, J.P.: E,: polyphenols and human health: prevention of disease and mechanisms of action. Nutrients. 2(11), 1106–1131 (2010)

    Article  Google Scholar 

  11. Panche, A.N., Diwan, A.D., Chandra, S.R.: Flavonoids: an overview. J. Nutr. Sci. 5, e47 (2016)

    Article  Google Scholar 

  12. Lim, Y.Y., Lim, T.T., Tee, J.J.: Antioxidant properties of guava fruit: comparison with some local fruits. Sunway Acad. J. 3, 9–20 (2006)

    Google Scholar 

  13. Ghasemi, K., Ghasemi, Y., Ebrahimzadeh, M.A.: Antioxidant activity, phenol and flavonoid contents of 13 citrus species peels and tissues. Pak J. Pharm. Sci. 22, 277–281 (2009)

    Google Scholar 

  14. Bor, T., Sulaiman, O., Aljaloud, R., Gyawali, S.A.: Antimicrobials from Herbs, Spices, and Plants. Fruits, Vegetables, and Herbs 3, 551–578 (2016)

    Article  Google Scholar 

  15. Chinnici, F., Bendini, A., Gaiani, A., Riponi, C.: Radical scavenging activities of peels and pulp from cv. Golden Delicious apples as related to their phenolic composition. J. Agric. Food Chem. 52, 4684–4689 (2004)

    Article  Google Scholar 

  16. Berardini, N., Frezer, R., Conrad, J., Beifuss, U., Carle, R., Schieber, A.: Screening of mango (Mangiferaindica) cultivars for their contents of flavanol O- and xanthone C-glycoside, anthocyanidins and pectin. J. Agric. Food Chem. 53, 1563–1570 (2005)

    Article  Google Scholar 

  17. Dutta, A., Singh, M.: Comparative analysis of aqueous extracts of Amaranth and Coriander in scavenging free radical activity and protection of DNA against oxidative damage. Chiang Mai J. Sci. 38(4), 560–571 (2011)

    Google Scholar 

  18. Sathya, B.V., Velpandian, Kumar, M.P.: Physicochemical characterization andinstrumental analysis of the polyherbal siddha contraceptive formulation maavilingathymathirai. World J. Pharm. Sci. 3(9), 789–799 (2014)

    Google Scholar 

  19. Redfern, J., Kinninmonth, M., Burdass, D., Verran, J.: Using soxhlet ethanol extraction to produce and test plant material (essential oils) for their antimicrobial properties. J. Micro Bio Ed. 15(1), 45–46 (2014)

    Article  Google Scholar 

  20. Devmurari, V., Ghodasara, T.J., Jivani, N.P.: Antibacterial activity and Phytochemical Study of Extract of Triumfetta homboidea Jacq. Int. J. Pharm. Tech. Res. 2(2), 1182–1186 (2010)

    Google Scholar 

  21. Mallard, W.G., Linstrom, P.J.: (eds.) (eds.): NIST Standard Reference Database, National Institute of Standards and Technology. NIST Chemistry Web Book. (2008). https://webbook.nist.gov)

  22. Das, M., Roy, S., Guha, C., Saha, A.K., Singh, M.: In vitro evaluation of antioxidant and antibacterial properties of supercritical CO2 extracted essential oil from clove bud (Syzygium aromaticum). J. Plant. Biochem. Biotechnol. 30, 387–391 (2021)

    Article  Google Scholar 

  23. Goswami, S.R., Sahareen, T., Singh, M., Kumar, S.: Role of biogenic silver nanoparticles in disruption of cell–cell adhesion in Staphylococcus aureus and Escherichia coli biofilm. J. Ind. Eng. Chem. 26, 73–80 (2015)

    Article  Google Scholar 

  24. Chockchaisawasdee, S., Stathopoulos, C.E.: Extraction, isolation and utilisation of bioactive compounds from fruit juice industry waste. In: Utilisation of Bioactive Compounds from Agricultural and Food Waste. CRC Press, Boca Raton (2017)

    Google Scholar 

  25. Morsy, K.M., Enas, M., Rasha, E.: Impact of pomegranate peel nanoparticles on quality attributes of meatballs during refrigerated storage. LWT 89, 489 (2018)

    Article  Google Scholar 

  26. Dash, S., Nath, L.K., Bhise, S., Bhuyan, N.: Antioxidant and antimicrobial activities of Heracleum nepalense D Don root. Trop. J. Pharm. Res. 4, 341–347 (2005)

    Google Scholar 

  27. Ralte, L., Khiangte, L., Thangjam, N.M.: GC–MS and molecular docking analyses of phytochemicals from the underutilized plant, Parkia timoriana revealed candidate anti-cancerous and anti-inflammatory agents. Sci. Rep. 12, 3395 (2022). https://doi.org/10.1038/s41598-022-07320-2

    Article  Google Scholar 

  28. Singh, A.S., Vellapandian, C.: Phytochemical Studies, antioxidant potential, and identification of bioactive compounds using GC-MS of the ethanolic extract of luffa cylindrica (L.) Fruit. Appl. Biochem. Biotechnol. 194(9), 4018–4032 (2022)

    Article  Google Scholar 

  29. Ferdous, N., Rahman, M., Alamgir, A.N.: Investigation on phytochemical, cytotoxic and antimicrobial properties of ethanolic extracts of Centella asiatica (L.) Urban. J. Med. Plants. 5, 187–188 (2017)

    Google Scholar 

  30. Ezhilan, B.P., Neelamegam, R.: GC-MS analysis of phytocomponents in the ethanol extract of Polygonum chinense L. Pharmacognosy Res. 4(1), 11–14 (2012). https://doi.org/10.4103/0974-8490.91028

    Article  Google Scholar 

  31. Ezhilan, B.P., Neelamegam, R.: GC-MS analysis of phytocomponents in the ethanol extract of Polygonum chinense L. Pharmacognosy Res. 4(1), 11–14 (2012)

    Article  Google Scholar 

  32. Shiva, S., Mari, S., Amuthan, A., Shanmugam, R.: Repurposing Siddha mercurial drug for mild to moderate COVID-19 - case series and exploration of its chemical profile. J. Ayurveda Integr. Med. 13(2), 100469 (2022)

    Article  Google Scholar 

  33. National Center for Biotechnology Information: : “PubChem Compound Summary for CID 3931, 9,12-Octadecadienoicacid. (2022). https://pubchem.ncbi.nlm.nih.gov/compound/9_12 Octadecadienoic-acid

  34. National Center for Biotechnology Information: : PubChem Compound Summary for CID 12389, Tetradecane. (2022). https://pubchem.ncbi.nlm.nih.gov/compound/Tetradecane

  35. National Center for Biotechnology: : Information PubChem Compound Summary for CID 23741, 1,2-Epoxyhexadecane. (2022). https://pubchem.ncbi.nlm.nih.gov/compound/1_2-Epoxyhexadecane

  36. National Center for Biotechnology: : Information PubChem Compound Summary for CID 425400, Tocopherol succinate. (2022). https://pubchem.ncbi.nlm.nih.gov/compound/Tocopherol-succinate

  37. Madureira, A.M., Ascenso, J.R., Valdeira, L., Duarte, A., Frade, J.P., Freitas, G., Ferreira, M.J.: Evaluation of the antiviral and antimicrobial activities of triterpenes isolated from Euphorbia segetalis. Nat. Prod. Res. 5, 375–80 (2003)

    Article  Google Scholar 

  38. National Center for Biotechnology Information: : “PubChem Compound Summary for CID31404, Butylated hydroxytoluene (2022). https://pubchem.ncbi.nlm.nih.gov/compound/Butylated-hydroxytoluene

  39. National Center for Biotechnology Information: : “PubChem Compound Summary for CID 5281, Stearic acid. (2022). https://pubchem.ncbi.nlm.nih.gov/compound/Stearic-acid,

  40. National Center for Biotechnology Information: : “PubChem Compound Summary for CID 445639, Oleic acid, (2022). https://pubchem.ncbi.nlm.nih.gov/compound/Oleic-acid.

  41. Gabriele, V., Gnoni, N., Francesco, J.H., Math, Geelen, S.: Luisa.: Oleic Acid as an Inhibitor of Fatty Acid and Cholesterol Synthesis, Olives and Olive Oil in Health and Disease Prevention. Academic Press. Chapter 152 - Pages 1365–1373 (2010)

  42. Ruiz, M.A., José, L., Arias, Visitación, G.: Skin creams made with olive oil olives and olive oil in health and disease prevention. Academic Press, Cambridge (2010)

    Google Scholar 

  43. Liu, C.M., Kao, C.L., Wu, H.M., Li, W.J., Huang, C.T., Li, H.T., Chen, C.Y.: Antioxidant and anticancer aporphine alkaloids from the leaves of Nelumbo nucifera Gaertn. cv. Rosa-plena. Molecules 19(11), 17829–17838 (2014)

    Article  Google Scholar 

  44. Agoramoorthy, M., Chandrasekaran, V., Venkatesalu, M.J.H.: Antibacterial and antifungal activities of fatty acid methyl esters of the blind-your-eye mangrove from India. Braz J. Microbiol. 38, 739–742 (2007)

    Article  Google Scholar 

  45. Aparna, V., Dileep, K.V., Mandal, P.K., et al.: Anti-inflammatory property of n-hexadecanoic acid: structural evidence and kinetic assessment. Chem. Biol. Drug Des. 80(3), 434–439 (2012)

    Article  Google Scholar 

  46. Zahara, K., Bibi, Y., Arshad, M., Kaukab, G., Al Ayoubi, S., Qayyum, A.: In-vitro examination and isolation of antidiarrheal compounds using five bacterial strains from invasive species Bidens bipinnata L. Saudi J. Biol. Sci. 29(1), 472–479 (2022)

    Article  Google Scholar 

  47. Casillas-Vargas, G., Ocasio-Malavé, C., Medinam, S., Morales-Guzmán, C., Valle, D., Carballeira, R.G., Sanabria-Ríos, N.M.: Antibacterial fatty acids: an update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Prog. Lipid Res. 82, 101093 (2021)

    Article  Google Scholar 

  48. Wright, H.T., Reynolds, K.A.: Antibacterial targets in fatty acid biosynthesis. Curr. Opin. Microbiol. 10(5), 447–453 (2007)

    Article  Google Scholar 

  49. Heath, R.J., Rock, C.O.: Fatty acid biosynthesis as a target for novel antibacterials. Curr. Opin. Investig. Drugs 5(2), 146–153 (2004)

    Google Scholar 

  50. Naguib, M.M., Valvano, M.A.: Vitamin E increases antimicrobial sensitivity by inhibiting bacterial lipocalin antibiotic binding. mSphere 3(6), e00564-18 (2018). https://doi.org/10.1128/mSphere.00564-18

    Article  Google Scholar 

  51. Yuan, W., Feng, Y., Wang, H., et al.: Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification. Mater. Sci. Eng. C. 33, 3644–3651 (2013)

    Article  Google Scholar 

  52. Bernini, J.C., Mustafa, M.M., Sutor, L.J., Buchanan, G.R.: Fatal hemolysis induced by ceftriaxone in a child with sickle cell anemia. J. Pediatr. 126, 813–825 (1995). https://doi.org/10.1016/s0022-3476(95)70417-5

    Article  Google Scholar 

  53. Fazley, M., Elahi, G.G., Lu, W.: Hemocompatibility of surface modified silk fibroin materials; a review. Rev. Adv. Mater. Sci. 38, 148–159 (2014)

    Google Scholar 

  54. Stefania, L., Anna, M.A., Claudia, B., Marco, C., Alessandro, D., Gemma, L., Claudio, R., Gabriella, T., Luana, G., Ersilia, F., Paolo, F., Ilaria, C., Agnese, M.: Evaluation of in vitro cell and blood compatibility and in vivo analgesic activity of plant-derived dietary supplements. J. Integr. Med. 17, 213–220 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful for support from the department of Biotechnology and Food Technology, Haldia Instiitute of technology, Haldia.

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

MS and PKB: planned and designed this research article. Material preparation and data collection were done by RKT. Biochemical assays performed by RKT, SP and AB. Results analysis done by MS. The first draft of the manuscript was written by RK Thakur. All authors read and approved the final manuscript for submission.

Corresponding author

Correspondence to Mukesh Singh.

Ethics declarations

Conflict of interest

Authors do not have any conflicts of interest.

Ethical Approval

NA.

Consent to Participate

NA.

Consent to Publish

All authors agreed to publish this paper in this journal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In the original publication of the article, the affiliation of coauthor “Prasanta Kumar Biswas” was published incorrectly. The same has been corrected and provided in this correction.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, R.K., Singh, M., Patra, S. et al. Phytochemicals Identification Using GC-MS in Four Extracts of Fruit Peels and Enactment of Extracts Against Pseudomonas Aeruginosa MZ269380. Waste Biomass Valor 14, 3043–3057 (2023). https://doi.org/10.1007/s12649-023-02062-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02062-2

Keywords

Navigation