Skip to main content

Advertisement

Log in

Waste Semi-coke Ash for Fabrication of Form-Stable Phase Change Materials for Thermal Energy Storage

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Massive accumulation of solid waste semi-coke ash (SCA) produced in industrial processes will damage local environment. To recycle SCA and fabricate low-cost thermal energy storage materials, the idea of fabricating the form-stable phase change materials (FSPCMs) with SCA as skeleton material and solar salt (SS) as phase change material was proposed innovatively. Seven FSPCMs with different SS content were prepared by compression and sintering method, and key performances were investigated by differential scanning calorimetry, constant-speed pressurization method, scanning electron microscopy, sessile drop method and X-ray diffraction. The research found that the sample A55 with 50 wt% SS showed the best performance; the thermal energy storage density of sample A55 was 483 J/g in the range of 100 to 450 °C; the compressive strength of sample A55 reached 86.12 MPa; the sample A55 had excellent chemical compatibility and thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available in the paper and its supplementary material. Raw data supporting the findings of this study are available from the corresponding author upon request.

References

  1. Tian, H.Q., Wang, W.L., Ding, J., Wei, X.L., Huang, C.L.: Preparation of binary eutectic chloride/expanded graphite as high-temperature thermal energy storage materials. Sol Energy Mater. Sol Cells. 149, 187–194 (2016). https://doi.org/10.1016/j.solmat.2015.12.038

    Article  Google Scholar 

  2. Liu, J.W., Xie, M., Ling, Z.Y., Fang, X.M., Zhang, Z.G.: Novel MgCl2-KCl/expanded graphite/graphite paper composite phase change blocks with high thermal conductivity and large latent heat. Sol Energy. 159, 226–233 (2018). https://doi.org/10.1016/j.solener.2017.10.083

    Article  Google Scholar 

  3. Yuan, M.D., Ren, Y.X., Xu, C., Ye, F., Du, X.Z.: Characterization and stability study of a form-stable erythritol/expanded graphite composite phase change material for thermal energy storage. Renewable Energy 136, 211–222 (2019). https://doi.org/10.1016/j.renene.2018.12.107

    Article  Google Scholar 

  4. Huang, Z.W., Luo, Z.G., Gao, X.N., Fang, X.M., Fang, Y.T., Zhang, Z.G.: Investigations on the thermal stability, long-term reliability of LiNO3/KCl–expanded graphite composite as industrial waste heat storage material and its corrosion properties with metals. Appl. Energy. 188, 521–528 (2017). https://doi.org/10.1016/j.apenergy.2016.12.010

    Article  Google Scholar 

  5. Singh, D., Kim, T., Zhao, W.H., Yu, W.H., France, D.M.: Development of graphite foam infiltrated with MgCl2 for a latent heat based thermal energy storage (LHTES) system. Renewable Energy 94, 660–667 (2016). https://doi.org/10.1016/j.renene.2016.03.090

    Article  Google Scholar 

  6. Karthik, M., Faik, A., D’aguanno, B.: Graphite foam as interpenetrating matrices for phase change paraffin wax: A candidate composite for low temperature thermal energy storage. Sol Energy Mater. Sol Cells. 172, 324–334 (2017). https://doi.org/10.1016/j.solmat.2017.08.004

    Article  Google Scholar 

  7. Li, R.G., Zhu, J.Q., Zhou, W.B., Cheng, X.M., Li, Y.Y.: Thermal compatibility of sodium nitrate/expanded perlite composite phase change materials. Appl. Therm. Eng. 103, 452–458 (2016). https://doi.org/10.1016/j.applthermaleng.2016.03.108

    Article  Google Scholar 

  8. Liu, C.Z., Luo, C.Y., Xu, T.T., Lv, P.Z., Rao, Z.H.: Experimental study on the thermal performance of capric acid-myristyl alcohol/expanded perlite composite phase change materials for thermal energy storage. Sol Energy. 191, 585–595 (2019). https://doi.org/10.1016/j.solener.2019.09.049

    Article  Google Scholar 

  9. Zhang, W.Y., Zhang, X.G., Huang, Z.H., Yin, Z.Y., Wen, R.L., Huang, Y.T., et al.: Preparation and characterization of capric-palmitic-stearic acid ternary eutectic mixture/expanded vermiculite composites as form-stabilized thermal energy storage materials. J. Mater. Sci. Technol. 34, 379–386 (2018). https://doi.org/10.1016/j.jmst.2017.06.003

    Article  Google Scholar 

  10. Li, R.G., Zhu, J.Q., Zhou, W.B., Cheng, X.M., Li, Y.Y.: Thermal properties of sodium nitrate-expanded vermiculite form-stable composite phase change materials. Mater. Des. 104, 190–196 (2016). https://doi.org/10.1016/j.matdes.2016.05.039

    Article  Google Scholar 

  11. Li, C.C., Wang, M.F., Xie, B.S., Ma, H., Chen, J.: Enhanced properties of diatomite-based composite phase change materials for thermal energy storage. Renewable Energy 147, 265–274 (2020). https://doi.org/10.1016/j.renene.2019.09.001

    Article  Google Scholar 

  12. Leng, G.H., Qiao, G., Jiang, Z., Xu, G.Z., Qin, Y., Chang, C., et al.: Micro encapsulated & form-stable phase change materials for high temperature thermal energy storage. Appl. Energy. 217, 212–220 (2018). https://doi.org/10.1016/j.apenergy.2018.02.064

    Article  Google Scholar 

  13. Li, C., Li, Q., Ding, Y.: Investigation on the thermal performance of a high temperature packed bed thermal energy storage system containing carbonate salt based composite phase change materials. Appl. Energy. 247, 374–388 (2019). https://doi.org/10.1016/j.apenergy.2019.04.031

    Article  Google Scholar 

  14. Sang, L.X., Li, F., Xu, Y.W.: Form-stable ternary carbonates/MgO composite material for high temperature thermal energy storage. Sol Energy. 180, 1–7 (2019). https://doi.org/10.1016/j.solener.2019.01.002

    Article  Google Scholar 

  15. Suleiman, B., Yu, Q.H., Ding, Y.L., Li, Y.L.: Fabrication of form stable NaCl-Al2O3 composite for thermal energy storage by cold sintering process. Front. Chem. Sci. Eng. 13, 727–735 (2019). https://doi.org/10.1007/s11705-019-1823-2

    Article  Google Scholar 

  16. Li, Y., Guo, B., Huang, G.F., Kubo, S.C., Shu, P.C.: Characterization and thermal performance of nitrate mixture/SiC ceramic honeycomb composite phase change materials for thermal energy storage. Appl. Therm. Eng. 81, 193–197 (2015). https://doi.org/10.1016/j.applthermaleng.2015.02.008

    Article  Google Scholar 

  17. Qian, T.T., Li, J.H., Ma, H.W., Yang, J.: The preparation of a green shape-stabilized composite phase change material of polyethylene glycol/SiO2 with enhanced thermal performance based on oil shale ash via temperature-assisted sol–gel method. Sol Energy Mater. Sol Cells. 132, 29–39 (2015). https://doi.org/10.1016/j.solmat.2014.08.017

    Article  Google Scholar 

  18. Ling, Z., Liu, J.W., Wang, Q.H., Lin, W.Z., Fang, X.M., Zhang, Z.G.: MgCl2· 6H2O-Mg (NO3)2· 6H2O eutectic/SiO2 composite phase change material with improved thermal reliability and enhanced thermal conductivity. Sol Energy Mater. Sol Cells. 172, 195–201 (2017). https://doi.org/10.1016/j.solmat.2017.07.019

    Article  Google Scholar 

  19. Yu, Q.H., Jiang, Z., Cong, L., Lu, T.J., Suleiman, B., Leng, G.H., et al.: A novel low-temperature fabrication approach of composite phase change materials for high temperature thermal energy storage. Appl. Energy. 237, 367–377 (2019). https://doi.org/10.1016/j.apenergy.2018.12.072

    Article  Google Scholar 

  20. Jiang, Z., Leng, G.H., Ye, F., Ge, Z.W., Liu, C.P., Wang, L., et al.: Form-stable LiNO3–NaNO3–KNO3–Ca (NO3) 2/calcium silicate composite phase change material (PCM) for mid-low temperature thermal energy storage. Energy Convers Manage. 106, 165–172 (2015). https://doi.org/10.1016/j.enconman.2015.09.035

    Article  Google Scholar 

  21. Pengthamkeerati, P., Satapanajaru, T., Chularuengoaksorn, P.: Chemical modification of coal fly ash for the removal of phosphate from aqueous solution. Fuel 87, 2469–2476 (2008). https://doi.org/10.1016/j.fuel.2008.03.013

    Article  Google Scholar 

  22. Bellmann, F., Stark, J.: Activation of blast furnace slag by a new method. Cem. Concr. Res. 39, 644–650 (2009). https://doi.org/10.1016/j.cemconres.2009.05.012

    Article  Google Scholar 

  23. Wang, T.Y., Zhang, T.Y., Xu, G.Z., Xu, C., Liao, Z.R., Ye, F.: A new low-cost high-temperature shape-stable phase change material based on coal fly ash and K2CO3. Sol Energy Mater. Sol Cells. 206, 110328 (2020). https://doi.org/10.1016/j.solmat.2019.110328

    Article  Google Scholar 

  24. Zhang, Y.B., Liu, J.C., Su, Z.J., Liu, B.B., Lu, M.M., Li, G.H., et al.: Utilizing blast furnace slags (BFS) to prepare high-temperature composite phase change materials (C-PCMs). Constr. Build. Mater. 177, 184–191 (2018). https://doi.org/10.1016/j.conbuildmat.2018.05.110

    Article  Google Scholar 

  25. Liu, J.C., Zhang, Y.B., Su, Z.J., Huang, D.Y., Xu, D., Lu, M.M., et al.: Novel low-cost anorthite porous ceramic-based binary chlorate high-temperature thermal energy storage material: preparation and characterization. Energy Fuels. (2021). https://doi.org/10.1021/acs.energyfuels.1c01196

    Article  Google Scholar 

  26. Xiong, Y.X., Wang, H.X., Wu, Y.T., Zhang, J.H., Li, H.M., Xu, Q., et al.: Carbide slag based shape-stable phase change materials for waste recycling and thermal energy storage. J Energy Storage. 50, 104256 (2022). https://doi.org/10.1016/j.est.2022.104256

    Article  Google Scholar 

  27. Wei, N., Wang, L., Zhao, B., Yan, Q.: Application characteristics and industrial development countermeasures of shenmu semi-coke. In: IOP Conference Series: Earth and Environmental Science, p. 012063. IOP Publishing (2021).

  28. Lin, R.Y., Lin, C.H., Li, Y.Y., Lin, B.: Study on the synergistic effect of calcium and aluminum on improving ash fusion temperature of semi-coke. Int. J. Coal Prep. Util. (2019). https://doi.org/10.1080/19392699.2019.1623791

    Article  Google Scholar 

  29. Sarı, A., Tuzen, M., Cıtak, D., Soylak, M.: Adsorption characteristics of Cu (II) and Pb (II) onto expanded perlite from aqueous solution. J. Hazard. Mater. 148, 387–394 (2007). https://doi.org/10.1016/j.jhazmat.2007.02.052

    Article  Google Scholar 

  30. Sutcu, M.: Influence of expanded vermiculite on physical properties and thermal conductivity of clay bricks. Ceram. Int. 41, 2819–2827 (2015)

    Article  Google Scholar 

  31. Qin, Y., Leng, G.H., Yu, X., Cao, H., Qiao, G., Dai, Y.F., et al.: Sodium sulfate–diatomite composite materials for high temperature thermal energy storage. Powder Technol. 282, 37–42 (2015). https://doi.org/10.1016/j.powtec.2014.08.075

    Article  Google Scholar 

  32. Jiang, Z., Rivero, M.E.N., Anagnostopoulos, A., She, X., Liu, X., Xuan, Y., et al.: Fabrication of form stable composite phase change materials for thermal energy storage by direct powder incorporation with a preheating process. Powder Technol. 391, 544–556 (2021). https://doi.org/10.1016/j.powtec.2021.06.030

    Article  Google Scholar 

  33. Jiang, F., Ge, Z., Ling, X., Cang, D., Zhang, L., Ding, Y.: Improved thermophysical properties of shape-stabilized NaNO3 using a modified diatomite-based porous ceramic for solar thermal energy storage. Renewable Energy 179, 327–338 (2021). https://doi.org/10.1016/j.renene.2021.07.023

    Article  Google Scholar 

  34. Hou, Y., Qiu, J., Wang, W., He, X., Ayyub, M., Shuai, Y.: Preparation and performance improvement of chlorides/MgO ceramics shape-stabilized phase change materials with expanded graphite for thermal energy storage system. Appl. Energy. 316, 119116 (2022)

    Article  Google Scholar 

  35. Yu, Q., Zhang, C., Lu, Y., Kong, Q., Wei, H., Yang, Y., et al.: Comprehensive performance of composite phase change materials based on eutectic chloride with SiO2 nanoparticles and expanded graphite for thermal energy storage system. Renewable Energy 172, 1120–1132 (2021). https://doi.org/10.1016/j.renene.2021.03.061

    Article  Google Scholar 

  36. Zhang, T., Wang, T., Wang, K., Xu, C., Ye, F.: Development and characterization of NaCl-KCl/Kaolin composites for thermal energy storage. Sol Energy. 227, 468–476 (2021). https://doi.org/10.1016/j.solener.2021.09.020

    Article  Google Scholar 

  37. Ran, X., Wang, H., Zhong, Y., Zhang, F., Lin, J., Zou, H., et al.: Thermal properties of eutectic salts/ceramics/expanded graphite composite phase change materials for high-temperature thermal energy storage. Sol Energy Mater. Sol Cells. 225, 111047 (2021). https://doi.org/10.1016/j.solmat.2021.111047

    Article  Google Scholar 

  38. Miliozzi, A., Chieruzzi, M., Torre, L.: Experimental investigation of a cementitious heat storage medium incorporating a solar salt/diatomite composite phase change material. Appl. Energy. 250, 1023–1035 (2019). https://doi.org/10.1016/j.apenergy.2019.05.090

    Article  Google Scholar 

  39. Xiong, Y.X., Wang, Z.Y., Sun, M.Y., Wu, Y.T., Xu, P., Qian, X., et al.: Enhanced thermal energy storage of nitrate salts by silica nanoparticles for concentrating solar power. IJER. 45, 5248–5262 (2021). https://doi.org/10.1002/er.6142

    Article  Google Scholar 

  40. Xiong, Y.X., Sun, M.Y., Wu, Y.T., Xu, P., Xu, Q., Li, C., et al.: Effects of synthesis methods on thermal performance of nitrate salt nanofluids for concentrating solar power. Energy Fuels. 34, 11606–11619 (2020). https://doi.org/10.1021/acs.energyfuels.0c02466

    Article  Google Scholar 

  41. Yu, Q., Lu, Y., Zhang, C., Zhang, X., Wu, Y., Sciacovelli, A.: Preparation and thermal properties of novel eutectic salt/nano-SiO2/expanded graphite composite for thermal energy storage. Sol Energy Mater Sol Cells. 215, 110590 (2020). https://doi.org/10.1016/j.solmat.2020.110590

    Article  Google Scholar 

  42. Xiong, Y.X., Song, C., Ren, J., Jin, Y., Nie, B., Xu, Q., et al.: Sludge-incinerated ash based shape-stable phase change composites for heavy metal fixation and building thermal energy storage. Process Saf. Environ. Prot. (2022). https://doi.org/10.1016/j.psep.2022.04.004

    Article  Google Scholar 

  43. Paula, J.D.: Atkins’ Physical Chemistry. WH Freeman and Company, New York (2006)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Program of Beijing Municipal Education Commission under Project [Grant Number KM201910016011]; the National Natural Science Foundation of China under Project [Grant Number 3151001]; and the National Natural Science Foundation of China under Project [Grant Number 51976203].

Funding

This work was supported by the Scientific Research Program of Beijing Municipal Education Commission under Project [Grant Number KM201910016011]; the National Natural Science Foundation of China under Project [Grant Number 3151001]; and the National Natural Science Foundation of China under Project [Grant Number 51976203].

Author information

Authors and Affiliations

Authors

Contributions

DG: Conceptualization, Methodology, Validation, Writing-original draft, Writing-review & editing. HL: Conceptualization, Writing-review, Project administration. YZ: Experimental tests. YW: Experimental tests and data analysis. YX: Conceptualization, Methodology, Project administration.

Corresponding authors

Correspondence to Hantao Liu or Yaxuan Xiong.

Ethics declarations

competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, D., Liu, H., Zhang, Y. et al. Waste Semi-coke Ash for Fabrication of Form-Stable Phase Change Materials for Thermal Energy Storage. Waste Biomass Valor 14, 2419–2432 (2023). https://doi.org/10.1007/s12649-022-02005-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-02005-3

Keywords

Navigation