Skip to main content

Advertisement

Log in

Recycling the Product of Thermal Inertization of Man-Made Vitreous Fibres for the Manufacture of Stoneware Tiles

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this paper, we present a process where the material deriving from the thermal inertization of exhaust hazardous mineral wool is recycled as secondary raw material in the production of “eco-friendly” ceramic tiles. The process proposed intends to: (1) promote the recovery and recycling of a material not served by the supply chain and therefore destined for landfill; (2) promote the use of alternative raw materials by encouraging an efficient use of resources from both an ecological and an economic point of view. In fact, this use will make it possible to: (a) replace natural mineral resources in production; (b) decrease importing raw materials over long distances, limiting energy cost; (c) avoid the risk of supply in the event of a blocking of exports. The glass material deriving from the inertization of the mineral wool is here fully characterized and, on the basis of its properties, it has been added to a batch for the production of porcelain stoneware tiles in substitution to fluxing component. The semi-finished products were characterized in terms of particle size distribution, powder moisture, green and dry bulk density, green and dry flexural strength, spring-back after pressing and drying shrinkage to highlight the eventual presence of bottleneck in the production cycle. The final products were fully characterized in terms of technological properties (linear firing shrinkage, water absorption, bulk density, open porosity, flexural strength, colorimetry). The final product properties resulted satisfactory, since the values of all the technological parameters recorded for the bodies realized with waste perfectly match the standard requirements for porcelain stoneware (ISO13600). Moreover, the introduction of inertized waste allowed to lower the firing temperature up to 40 °C with respect to the benchmark. The only drawback observed is related to the colour of the ceramic bodies: the amount of Fe intrinsically present in the inertized glass lead to a darker final colour.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Harrison, P., Holmes, P., Bevan, R., Kamps, K., Levy, L., Greim, H.: Regulatory risk assessment approaches for synthetic mineral fibres. Regul. Toxicol. Pharmacol. 73, 425–441 (2015)

    Article  Google Scholar 

  2. Gualtieri, A.F., Lassinantti Gualtieri, M., Scognamiglio, V., Di Giuseppe, D.: Human health hazards associated with asbestos in building materials. In: Ecological and health effects of building materials, pp. 297–325. Springer, Cham (2022)

    Chapter  Google Scholar 

  3. Gualtieri, A.F.: Mineral fibre-based building materials and their health hazards. In: Pacheco-Torgal, F., Jalali, S., Fucic, A. (eds.) Toxicity of building materials, pp. 166–195. Woodhead, Cambridge (2012)

    Chapter  Google Scholar 

  4. Gellert, R.: Inorganic mineral materials for insulation in buildings. In: Materials for energy efficiency and thermal comfort in buildings, pp. 193–228. Woodhead Publishing, Cambridge (2010)

    Chapter  Google Scholar 

  5. Kowatsch, S.: Mineral wool insulation binders. In: Pilato, L. (ed.) Phenolic resins: a century of progress, pp. 209–242. Springer, Berlin, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Yliniemi, Y., Ramaswamy, R., Luukkonen, T., Laitinen, O., de Sousa, A.N., Huuhtanen, M., Illikainen, M.: Characterization of mineral wool waste chemical composition, organic resin content and fiber dimensions: aspects for valorization. Waste Man. 131, 323–330 (2021)

    Article  Google Scholar 

  7. WHO, 1997. Determination of airborne fibre number concentrations. A recommended method, by phase contrast optical microscopy (Membrane Filter Method).

  8. Wohlleben, W., Waindok, H., Daumann, B., Werle, K., Drum, M., Egenolf, H.: Composition, respirable fraction and dissolution rate of 24 stone wool MMVF with their binder. Part Fibre Toxicol. 14, 29 (2017)

    Article  Google Scholar 

  9. Sattler, T., Pomberger, R., Schimek, J., Vollprecht, D.: Mineral wool waste in Austria, associated health aspects and recycling options. Detritus 9, 174–180 (2020)

    Article  Google Scholar 

  10. Yap, Z.S., Khalid, N.H.A., Haron, Z., Mohamed, A., Tahir, M.M., Hasyim, S., Saggaff, A.: Waste mineral wool and its opportunities—a review. Materials 14, 5777 (2021)

    Article  Google Scholar 

  11. Lemougna, P., Yliniemi, J., Nguyen, H., Adesanya, E., Tanskanen, P., Kinnunen, P., Roning, J., Illikainen, M.: Utilisation of glass wool waste and mine tailings in high performance building ceramics. J. Build. Eng. 31, 101383 (2021)

    Article  Google Scholar 

  12. Pavel, C. C., Blagoeva, D. T.: Competitive landscape of the EU’s insulation materials industry for energy-efficient buildings. PUBSY No. JRC108692 EUR, 28816. (2018)

  13. Väntsi, O., Kärki, T.: Mineral wool waste in Europe: a review of mineral wool waste quantity, quality, and current recycling methods. J. Mater. Cycl. Waste Man. 16, 62–72 (2014)

    Article  Google Scholar 

  14. Müller, A., Leydolph, B., Stanelle, K.: Stoffliche verwertung von mineralwolleabfällen—technologien für die strukturumwandlung. Keram. Zeit. 06, 367–375 (2009)

    Google Scholar 

  15. Zanatto, I., A.F. Gualtieri (2021) Italian Patent N. 102021000002246 “Apparato per il trattamento di rifiuti contenenti lana minerale”, Deposit date: February 2, 2021.

  16. Dondi, M.: Feldspathic fluxes for ceramics: sources, production trends and technological value. Res. Cons. & Recycl. 133, 191–205 (2018)

    Article  Google Scholar 

  17. Dondi, M., Javier García-Ten, J., Rambaldi, E., Zanelli, C., Vicent-Cabedo, M.: Resource efficiency versus market trends in the ceramic tile industry: effect on the supply chain in Italy and Spain. Res. Cons. Recycl. 168, 105271 (2021)

    Article  Google Scholar 

  18. Zanelli, C., Conte, S., Molinari, C., Soldati, R., Dondi, M.: Waste recycling in ceramic tiles: a technological outlook. Resour. Conserv. Recycl. 168, 105289 (2021)

    Article  Google Scholar 

  19. Degen, T., Sadki, M., Bron, E., König, U., Nénert, G.: The HighScore suite. Powd. Diff. 29, 13–18 (2014)

    Article  Google Scholar 

  20. Franzini, M., Leoni, L., Saitta, M.: Revisione di una metodologia analitica per fluorescenza-X, basata sulla correzione completa degli effetti di matrice. Rend. Soc. It. Min. Petr. 31, 365–378 (1975)

    Google Scholar 

  21. Leoni, L., Saitta, M.: (1976) X-ray fluorescence analysis of 29 trace elements in rock and mineral standards. Rend. Soc. It. Min. Petr. 32, 497–519 (1976)

    Google Scholar 

  22. EN 12457–2, Characterization of waste. Leaching – Compliance test for leaching of granular wastes materials and sludges, Part 2: One stage batch test at a liquid to solid ratio of 10 l kg−1 for materials with particle size below 4 mm (without or with size reduction). European Committee of Standardization, Brussels, pp. 32

  23. ISO, E.N.: Water quality—determination of pH, p. 26. European Committee of Standardization, Brussels (2012)

    Google Scholar 

  24. APAT (2003), Irsa-Cnr. Metodi analitici per le acque. Manuali e linee guida, 29: 2003

  25. Water analysis. Guidelines for the determination of total organic carbon (TOC) and Dissolved organic carbon (DOC). European Committee of Standardization, Brussels, pp. 18

  26. EN ISO 11885:2009, Water quality—determination of selected elements by inductive coupled plasma optical spectrometry (ICP-OES). European Committee of Standardization, Brussels, pp. 42

  27. EN ISO 10304–1:2009, Water quality—Determination of dissolved anions by liquid chromatography of ions—Part 1: Determination of bromide, chloride, fluoride, nitrate, phosphate and sulfate. European Committee of Standardization, Brussels, pp. 26

  28. Matteucci, F., Dondi, M., Guarini, G.: Effect of soda-lime glass on sintering and technological properties of porcelain stoneware tiles. Cer. Intern. 28, 873–880 (2002)

    Article  Google Scholar 

  29. Carbonchi, C., Danasino, P., Lorici, R., Riveriti, R., Castelli, E.: Impiego di fondenti additivati con vetro in un impasto da gres porcellanato. Ceramica Informazione 426, 580–587 (2003)

    Google Scholar 

  30. Rambaldi, E., Tucci, A., Esposito, L.: Glass recycling in porcelain stoneware tiles: firing behaviour. Ceram. Forum Int. 81, 32–36 (2004)

    Google Scholar 

  31. Rambaldi, E., Carty, W.M., Tucci, A., Esposito, L.: Using waste glass as a partial flux substitution and pyroplastic deformation of a porcelain stoneware tile body. Cer. Intern. 33, 727–733 (2007)

    Article  Google Scholar 

  32. Tarvornpanich, T., Souza, G.P., Lee, W.E.: Microstructural evolution on firing soda–lime–silica glass fluxed whitewares. J. Am. Cer. Soc. 88, 1302–1308 (2005)

    Article  Google Scholar 

  33. Tucci, A., Esposito, L., Rastelli, E., Palmonari, C., Rambaldi, E.: Use of soda-lime scrap-glass as a fluxing agent in a porcelain stoneware tile mix. J. Eur. Cer. Soc. 24, 83–92 (2004)

    Article  Google Scholar 

  34. Tucci, A., Rambaldi, E., Esposito, L.: Use of scrap glass as raw material for porcelain stoneware tiles. Ad. Appl. Cer. 105, 40–45 (2006)

    Article  Google Scholar 

  35. Pontikes, Y., Christogerou, A., Angelopoulos, G.N., Rambaldi, E., Esposito, L., Tucci, A.: Use of scrap soda–lime–silica glass in traditional ceramics. Glass Tech. 46, 200–206 (2005)

    Google Scholar 

  36. Raimondo, M., Zanelli, C., Matteucci, F., Guarini, G., Dondi, M., Labrincha, J.A.: Effect of waste glass (TV/PC cathodic tube and screen) on technological properties and sintering behaviour of porcelain stoneware tiles. Cer. Int. 33, 615–623 (2007)

    Article  Google Scholar 

  37. Lin, K.L.: Use of thin film transistor liquid crystal display (TFT-LCD) waste glass in the production of the ceramic tiles. J. Haz. Mat. 148, 91–97 (2007)

    Article  Google Scholar 

  38. Andreola, N.M.F., Barbieri, L., Karamanova, E., Lancellotti, I., Pelino, M.: Recycling of CRT panel glass as fluxing agent in the porcelain stoneware tile production. Cer. Int. 34, 1289–1295 (2008)

    Article  Google Scholar 

  39. Bernardo, E., Dattoli, A., Bonomo, E., Esposito, L., Rambaldi, E., Tucci, A.: Application of an industrial waste glass in “glass–ceramic stoneware.” Int. J. App. Cer. Tech. 8, 1153–1162 (2011)

    Article  Google Scholar 

  40. Bernardo, E., Esposito, L., Rambaldi, E., Tucci, A., Hreglich, S.: Recycle of waste glass into “glass–ceramic stoneware.” J. Am. Cer. Soc. 91, 2156–2162 (2008)

    Article  Google Scholar 

  41. Bernardo, E., Esposito, L., Hreglich, S., Rambaldi, E., Timellini, G., Tucci, A.: Tailored waste based glasses as secondary raw materials for porcelain stoneware. Adv. App. Cer. 107, 322–328 (2008)

    Article  Google Scholar 

  42. Mustafi, S., Ahsan, M., Dewan, A.H., Ahmed, S., Khatun, N., Absar, N.: Effect of waste glass powder on physico-mechanical properties of ceramic tiles. Bangl. J. Sc. Res. 24, 169–180 (2012)

    Article  Google Scholar 

  43. Ajanaku, K. O., Pal, M., & Das, S. K.: Differences in Vitrification Behaviour of Flint and Opaque Scrap Glass Containing Porcelainized Stoneware Body. DKG 92 , 31–34 (2015)

  44. Gualtieri, A.F., Foresti, E., Lesci, I.G., Roveri, N., Gualtieri, M.L., Dondi, M., Zapparoli, M.: The thermal transformation of man made vitreous fibers (MMVF) and safe recycling as secondary raw materials (SRM). J. Haz. Mat. 162, 1494–1506 (2009)

    Article  Google Scholar 

  45. Alves, J.O., Espinosa, D.C.R., Tenório, J.A.S.: Recovery of steelmaking slag and granite waste in the production of rock wool. Mat. Res. 18, 204–211 (2015)

    Article  Google Scholar 

  46. Italian Ministerial Decree. Decreto Ministeriale 5 aprile 2006, n. 186—“Regolamento recante modifiche al decreto ministeriale 5 febbraio 1998—Individuazione dei rifiuti non pericolosi sottoposti alle procedure semplificate di recupero, ai sensi degli articoli 31 e 33 del decreto legislativo 5 febbraio 1997, n. 22”. Gazzetta Ufficiale, 2006, 19

  47. Italian Ministerial Decree of 5 February 1998, Identification of non-hazardous waste subject to simplified recovery procedures, in accordance with Articles 31 and 33 of Legislative Decree February 5, 1997, n. 22. Gazzetta Ufficiale, 1998, 72

  48. Regulation (EC) No 1907/2006 of the European parliament and the council of 18 December 2006 concerning the registration, evaluation, authorisation and restriction of chemicals (REACH), establishing a European chemicals agency, amending directive 1999/45/EC and repealing council regulation (EEC) No 793/93 and commission regulation (EC) No 1488/94 as well as council directive 76/769/EEC and commission directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. Off J Eur Union L396:1–525

  49. Zanelli, C., Soldati, R., Conte, S., Guarini, G., Ismail, A.I.M., El-Maghraby, M.S., Cazzaniga, A., Dondi, M.: Technological behavior of porcelain stoneware bodies with Egyptian syenites. Int. J. Appl. Ceram. Technol. 16, 1–11 (2019)

    Article  Google Scholar 

  50. Zanelli, C., Domínguez, E., Iglesias, C., Conte, S., Molinari, C., Soldati, R., Guarini, G., Dondi, M.: Recycling of residual boron muds into ceramic tiles. Boletín de la Sociedad Espa˜nola de Cer´amica y Vidrio, 58, 199–210 (2019)

  51. Conte, S., Buonamico, D., Magni, T., Arletti, A., Dondi, M., Guarini, G., Zanelli, C.: Recycling of bottom ash from biomass combustion in porcelain stoneware tiles: effects on technological properties, phase evolution and microstructure. J. Eur. Cer. Soc. 42, 5153–5163 (2022)

    Article  Google Scholar 

  52. ISO 13006, 2018. Ceramic tiles—definitions, classification, characteristics and marking. International Organization for Standardization.

Download references

Acknowledgements

Zetadi S.r.l. (Ferno, Varese, Italy) is kindly acknowledged for the participation to this project and for providing the Re.wo. m.p.s.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by SC, MI, DG, VS, DM, CZ. The first draft of the manuscript was written by RA, SC, AG. MD and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rossella Arletti.

Ethics declarations

Conflict of interest

Alessandro F. Gualtieri is inventor of an Italian patent protecting the inertization process of the exhaust wool: Italian Patent N. 102021000002246 “Apparato per il trattamento di rifiuti contenenti lana minerale”, Inventors: I. Zanatto, A.F. Gualtieri. Repository date: February 2, 2021.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arletti, R., Conte, S., Zanelli, C. et al. Recycling the Product of Thermal Inertization of Man-Made Vitreous Fibres for the Manufacture of Stoneware Tiles. Waste Biomass Valor 14, 1721–1736 (2023). https://doi.org/10.1007/s12649-022-01959-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01959-8

Keywords

Navigation