Skip to main content
Log in

Comparative Evaluation of Microbial Ensilaging of Fish, Vegetable and Fish-Vegetable Composite Wastes

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The purpose of this study was to see how differences in the C/N ratio affected the microbial decomposition of composite waste from fish and vegetables, which led to the development of composite silage. In this experiment, T1 (100% FW), T2 (100% VW), and T3 (80% FW + 20% VW), along with carbohydrate (15% Jaggery) and starter culture Lactobacillus acidophilus (MTCC 10,307), were used for the microbial ensilation. Variations in proximate composition, chemical changes (pH, TTA), the proteinous nitrogenous fraction (C/N ratio, NPN, DH), lipid oxidation (TBARs), and microbial total LAB & Fungal counts (log cfu/g) were investigated on every alternative day during the three weeks of microbial ensilage at room temperature (30 ± 2 °C). A significant (P < 0.05) decrease in carbon/nitrogen ratio was observed among T1 (9.36–7.50), T2 (22.31–20.27), and T3 (11.96–7.0) during the ensilage of three weeks in room temperature (30 ± 2 °C). In all the treatments, titratable acidity and LAB (107–1010 log cfu /gm) show increasing trends which are correlated with the decrease in carbon/nitrogen ratio and pH value (< 4.5) after 72 h of ensilage. Nitrogenous fraction (NPN, DH), and lipid peroxidation product (TBARs) change significantly (P < 0.05) in the following trend T1 > T3 > T2, respectively. Yeast and mould counts were absent in all the samples. The results indicated that the carbon/nitrogen ratio substantially affects the microbial ensilage of fish and vegetable waste. The best combination of the C/N ratio can effectively ensilage these two different stream wastes as animal feed ingredients in the aquaculture industry.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code Availability

Not applicable.

Abbreviations

FW::

Fish Waste

VW::

Vegetable Waste

C H N S::

Carbon Hydrogen Nitrogen Sulphur

C/N ratio::

Carbon/Nitrogen ratio

NPN::

Non-Protein Nitrogen

DH::

Degree of Hydrolysis

TTA::

Total Titratable Acidity

TBARs::

Thiobarbituric acid reactive substances

TCA::

Trichloroacetic acid

PN::

Protein Nitrogen

TN::

Total Nitrogen

CP::

Crude Protein

DM::

Dry Matter

AOAC::

Association of Official Agricultural Chemists

MTCC::

Microbial Type Culture Collection and Gene Bank

CFU::

Colony forming units

MRS agar::

De Man Rogosa and Sharpe agar

TLAB::

Total Lactic acid Bacteria

References

  1. Jaiswal, K.K., Jha, B., Prasath, R.A.: Biodiesel production from discarded fish waste for sustainablesclean energy development. J. Chem. Pharm. Sci 974, 2115 (2014)

    Google Scholar 

  2. Kayhanian M., Tchobanoglous G.: Computation of C/N ratios for various organic fractions. Biocycle 33, 58–60 (1992)

  3. Singh, A., Kuila, A., Adak, S., Bishai, M., Banerjee, R.: Utilization of vegetable wastes for bioenergy generation. Agri. Res. 1(3), 213–222 (2012). https://doi.org/10.1007/s40003-012-0030-x

    Article  Google Scholar 

  4. Samuel, J., Kumar, L., Rintu, B.: Kinetic modeling of mixed culture process of anaerobic co-digestion of vegetable wastes with Pistia stratiotes: a scientific attempt on biomethanation. J. Microb. Biochem. Technol. 9(1), 554–566 (2017). https://doi.org/10.4172/1948-5948.1000341

    Article  Google Scholar 

  5. Bhaskar, N., Mahendrakar, N.S.: Chemical and microbiological changes in acid ensiled visceral waste of Indian major carp Catla catla (Hamilton) with emphasis on proteases. Indian J. Fish. 54(2), 217–225 (2007)

    Google Scholar 

  6. Chelule, P. K., Mokoena, M. P., & Gqaleni, N.: Advantages of traditional lactic acid bacteria fermentation of food in Africa. Current res. Tech. and edu. topics in appl. micr. and microbial biotech. 2, 1160–1167 (2010)

  7. Al-Marzooqi, W., Al-Farsi, M.A., Kadim, I.T., Mahgoub, O., Goddard, J.S.: The effect of feeding different levels of sardine fish silage on broiler performance, meat quality and sensory characteristics under closed and open-sided housing systems. Asian-Austra. J. Ani. Sci. 23(12), 1614–1625 (2010). https://doi.org/10.5713/ajas.2010.10119

    Article  Google Scholar 

  8. Borghesi, R., Portz, L., Oetterer, M., Cyrino, J.E.P.: Apparent digestibility coefficient of protein and amino acids of acid, biological and enzymatic silage for Nile tilapia (Oreochromis niloticus). Aqua. Nutri. 14(3), 242–248 (2008). https://doi.org/10.1111/j.1365-2095.2007.00523.x

    Article  Google Scholar 

  9. Kjos, N.P., Herstad, O., Skrede, A., Øverland, M.: Effects of dietary fish silage and fish fat on performance and egg quality of laying hens. Can. J. Anim. Sci. 81(2), 245–251 (2001). https://doi.org/10.4141/A00-086

    Article  Google Scholar 

  10. Rahmi, M., Faid, M., ElYachioui, M., Fakir, M., Ouhssine, M.: Protein rich ingredients from fish waste for sheep feeding. Afr. J. Microbiol. Res. 2(4), 73–77 (2008)

    Google Scholar 

  11. Zynudheen, A.A., An, R., Ramach, K.G.: Effect of dietary supplementation of fermented fish silage on egg production in Japanese quail (Coturnix coromandelica). Afr. J. Agr. Res. 3(5), 379–383 (2008)

    Google Scholar 

  12. Rughoonundun, H., Mohee, R., Holtzapple, M.T.: Influence of carbon-to-nitrogen ratio on the mixed-acid fermentation of wastewater sludge and pretreated bagasse. Bioresour. Technol. 112, 91–97 (2012). https://doi.org/10.1016/j.biortech.2012.02.081

    Article  Google Scholar 

  13. Álvarez, J.A., Otero, L., Lema, J.M.: A methodology for optimising feed composition for anaerobic co-digestion of agro-industrial wastes. Bioresour. Technol. 101(4), 1153–1158 (2010). https://doi.org/10.1016/j.biortech.2009.09.061

    Article  Google Scholar 

  14. Domke, S.B., Aiello-Mazzarri, C., Holtzapple, M.T.: Mixed acid fermentation of paper fines and industrial biosludge. Bioresour. Technol. 91(1), 41–51 (2004). https://doi.org/10.1016/S0960-8524(03)00156-1

    Article  Google Scholar 

  15. Aiello-Mazzarri, C., Coward-Kelly, G., Agbogbo, F.K., Holtzapple, M.T.: Conversion of municipal solid waste into carboxylic acids by anaerobic countercurrent fermentation. Appl. Biochem. Biotechnol. 127(2), 79–93 (2005). https://doi.org/10.1385/ABAB:127:2:079

    Article  Google Scholar 

  16. Fu, Z., Holtzapple, M.T.: Fermentation of sugarcane bagasse and chicken manure to calcium carboxylates under thermophilic conditions. Appl. Biochem. Biotechnol. 162(2), 561–578 (2010). https://doi.org/10.1007/s12010-009-8748-z

    Article  Google Scholar 

  17. Bolsen, Keith K.: The use of aids to fermentation in silage production. ME McCullough, ed." Natl. Feed Ingred. Assoc., West Des Moines, IA. 181—200, (1978)

  18. AOAC: Official Methods of Analysis of the Association of the Official Analytical Chemists, 18th edn. AOAC, Gaithersburg (2005)

  19. McGeehan, S.L., Naylor, D.V.: Automated instrumental analysis of carbon and nitrogen in plant and soil samples. Commun. Soil. Sci. Plant Anal. 19(4), 493–505 (1988). https://doi.org/10.1080/00103628809367953

    Article  Google Scholar 

  20. Hoyle, N.T., Merritt, J.H.: Quality of fish protein hydrolysate from Herring (Clupea harengus). J. Food Sci. 59, 76–79 (1994). https://doi.org/10.1111/j.1365-2621.1994.tb06901.x

    Article  Google Scholar 

  21. Tarladgis, B.G., Waits, B.M., Younathan, M.T., Dugan, L., Jr.: A distillation method for quantitative determination of malonaldehyde in rancid foods. J. Am. Oil Chem. Soc. 37, 44–48 (1960). https://doi.org/10.1007/BF02630824

    Article  Google Scholar 

  22. Ozyurt, C.E., Boga, E.K., Ozkutuk, A.S., Ucar, Y., Durmus, M., Ozyurt, G.: Bioconversion of discard fish (Equulites klunzingeri and Carassius gibelio) fermented with natural lactic acid bacteria; the chemical and microbiological quality of ensilage. Waste. Biomass. Valoriza. 11(4), 1435–1442 (2020). https://doi.org/10.1007/s12649-018-0493-5

    Article  Google Scholar 

  23. Javeed, A., Mahendrakar, N.S.: Growth and meat quality of broiler chicks fed with fermented fish viscera silage. Int. J. Anim. Sci. 11(1), 1–5 (1996)

    Google Scholar 

  24. Wadhwa, M., Bakshi, M.P.S.: Utilization of fruit and vegetable wastes as livestock feed and as substrates for generation of other value-added products. Rap Publication 4, 1–67 (2013)

    Google Scholar 

  25. Marino, C. T., Hector, B., Rodrigues, P. M., Borgatti, L. O., Meyer, P. M., Alves da Silva, E. J., & Ørskov, E. R. : Characterization of vegetables and fruits potential as ruminant feed by in vitro gas production technique. Livest. Res. Rural Dev, 22, 168 (2010)

  26. Mekasha, Y., Tegegne, A., Yami, A., Umunna, N.N.: Evaluation of non-conventional agro-industrial by-products as supplementary feeds for ruminants: in vitro and metabolism study with sheep. Small Rumin. Res. 44(1), 25–35 (2002). https://doi.org/10.1016/S0921-4488(02)00009-3

    Article  Google Scholar 

  27. Akinfemi, A.: Evaluation of nutritive value of vegetable wastes grown in North Central Nigeria using in vitro gas production technique in ruminant Animals. J. of Ani. Sci. Advan. 2(11), 914–920 (2012)

    Google Scholar 

  28. Dong, F.M., Fairgrieve, W.T., Skonberg, D.I., Rasco, B.A.: Preparation and nutrient analyses of lactic acid bacterial ensiled salmon viscera. Aquac. 109(3–4), 351–366 (1993). https://doi.org/10.1016/0044-8486(93)90174-W

    Article  Google Scholar 

  29. Hardy, R.W. and Masumoto, T., April: Specifications for marine by-products for aquaculture. In Proc. Int. Conf. on Fish By-products. Anchorage, AK. Alaska Sea Grant College Program. 109–120 (1990)

  30. Martinez, F.A.C., Balciunas, E.M., Salgado, J.M., González, J.M.D., Converti, A. and de Souza Oliveira, R.P.: Lactic acid properties, applications and production: A review. Trends food sci. & technol. 30 (1), 70–83 (2013). https://doi.org/10.1016/j.tifs.2012.11.007

  31. Özyurt, G., Gökdoğan, S., Şimşek, A., Yuvka, I., Ergüven, M., Kuley, B.E.: Fatty acid composition and biogenic amines in acidified and fermented fish silage: a comparison study. Arch. Anim. Nutr. 70(1), 72–86 (2016)

    Article  Google Scholar 

  32. Xavier, K.M., Geethalekshmi, V., Senapati, S.R., Mathew, P.T., Joseph, A.C., Nair, K.R.: Valorization of squid processing waste as animal feed ingredient by acid ensilaging process. Waste. Biomass. Valoriza. 8(6), 2009–2015 (2017). https://doi.org/10.1007/s12649-016-9764-1

    Article  Google Scholar 

  33. Lindgren, S., Pleje, M.: Silage fermentation of fish or fish waste products with lactic acid bacteria. J. Sci. Food Agr. 34, 1057–1067 (1983). https://doi.org/10.1002/jsfa.2740341005

    Article  Google Scholar 

  34. Shen, Q., Guo, R., Dai, Z., Zhang, Y.: Investigation of enzymatic hydrolysis conditions on the properties of protein hydrolysate from fish muscle (Collichthys niveatus) and evaluation of its functional properties. J. Agric. Food Chem. 60(20), 5192–5198 (2012). https://doi.org/10.1021/jf205258f

    Article  Google Scholar 

  35. Jacobsen, C., Timm, M., Meyer, A.S.: Oxidation in fish oil enriched mayonnaise: ascorbic acid and low pH increase oxidative deterioration. J. of agric. and food chem. 49(8), 3947–3956 (2001). https://doi.org/10.1021/jf001253e

    Article  Google Scholar 

  36. Schormüller, J.: Fette und lipoide (lipids) In Schormüller J. (ed.) Handbuch der lebensmittel chemie, Band II/2 teil. Springer Verlag Berlin, Heidelberg, New York, pp. 872–878 (1968)

  37. Disney, J.G., Hoffman, A., Olley, J., Clucas, I.J., Barranco, A., Francis, B.J.: Development of fish silage/carbohydrate animal feed for use in the tropics. Tropical sci. 20(2), 129–144 (1978)

    Google Scholar 

  38. Jangaard, P.M.: Fish silage: A review and some recent developments, pp. 8–33. In Fish Silage Workshop, Church Point, Nova Scotia, DFO Canada, Halifax, NS (1987)

    Google Scholar 

  39. Pan, I., Dam, B., Sen, S.K.: Composting of common organic wastes using microbial inoculants. Biotech 2(2), 127–134 (2012). https://doi.org/10.1007/s13205-011-0033-5

    Article  Google Scholar 

  40. Ahmed, J., Mahendrakar, N.S.: Autolysis and rancidity development in tropical freshwater fish viscera during fermentation. Bioresour. Technol. 58(3), 247–251 (1996). https://doi.org/10.1016/S0960-8524(96)00085-5

    Article  Google Scholar 

  41. Palkar, N.D., Koli, J.M., Patange, S.B., Sharangdhar, S.T., Sadavarte, R.K., Sonavane, A.E.: Comparative study of fish silage prepared from fish market waste by using different techniques. Int. J. Curr. Microbiol. App. Sci. 6(12), 3844–3858 (2017)

    Article  Google Scholar 

  42. Zahar, M., Benkerroum, N., Guerouali, A., Laraki, Y., El Yakoubi, K.: Effect of temperature, anaerobiosis, stirring and salt addition on natural fermentation silage of sardine and sardine wastes in sugarcane molasses. Bioresour. Technol. 82(2), 171–176 (2002). https://doi.org/10.1016/S0960-8524(01)00165-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the ICAR-Central Institute of Fisheries Education for students fellowship and National Agricultural Higher Education Project (NAHEP) for the financial and infrastructure support to carry out the research work.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SKG: Carried out the research work and prepared the manuscript; RK: Helped in experimentation; KAM and AKB: Intermediate review of work and facilitation of instrumental analyses. SKH: Co-guidance and facilitation of microbial analyses BBN: Conceptualization of research design, guidance, and manuscript correction.

Corresponding author

Correspondence to Binaya Bhusan Nayak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S.K., Reddy, R., Xavier, K.A.M. et al. Comparative Evaluation of Microbial Ensilaging of Fish, Vegetable and Fish-Vegetable Composite Wastes. Waste Biomass Valor 14, 1657–1666 (2023). https://doi.org/10.1007/s12649-022-01956-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01956-x

Keywords

Navigation