Skip to main content

Advertisement

Log in

Effect of Modification on Quality Parameters of Jackfruit (Atrocarpus heterophyllus) Seed Starch to Valorize its Food Potential and In-Silico Investigation of the Pharmacological Compound Against Salmonellosis

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

The study was planned to valorize jackfruit seed starch in food applications by determining the effect of modification on physicochemical, and functional properties of jackfruit as well as its relevance in pharmacology.

Methods

The seeds were separated from ripe, fresh fruits of the variety Koozha pazham and transformed into flour, and stored at 4 °C. Starch was extracted from seed flour using the distilled method and modified using acid hydrolysis and ultrasonic methods. Molecular docking was used for the virtual screening of potential inhibitors of jackfruit against the target of Salmonella.

Results

Jackfruit seeds had a starch yield of 19.40 percent. The proximate principles of native jackfruit seed starch were found to reduce with the modification. Amylopectin content was found to be the highest in native jackfruit seed starch (71.50 ± 0.48%); whereas, the highest amylose content was recorded in acid-modified jackfruit seed starch (34.65 ± 0.34%). Acid hydrolysis decreased OAC (Oil Absorption Capacity), swelling power, and dispersibility, while increasing bulk, WAC (Water Absorption Capacity), and solubility percent of jackfruit seeds. The pretty good binding affinity was found for the artocarmin A (− 5.9 kcal/mol) against the target protein (PDB ID: 7CG0) of Salmonella.

Conclusion

Modification resulted in high purity starch as well as improved functional properties of native jackfruit seed starch. The molecular docking process predicted a pretty good binding affinity (− 5.9 kcal/mol) of Artocarmin A against the target protein of Salmonella.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data and supplementary materials used and analyzed during the current study will be made available upon reasonable request.

References

  1. Madrigal-Aldana, D.L., Tovar-Gómez, B., de Oca, M.M.M., Sáyago-Ayerdi, S.G., Gutierrez-Meraz, F., Bello-Pérez, L.A.: Isolation and characterization of Mexican jackfruit (Artocarpus heterophyllus L) seeds starch in two mature stages. Starch-Stärke 63(6), 364–372 (2011). https://doi.org/10.1002/star.201100008

    Article  Google Scholar 

  2. Swami, S.B., Thakor, N.J., Haldankar, P.M., Kalse, S.B.: Jackfruit and its many functional components as related to human health: a review. Comp. Rev. Food Sci. Food Saf. 11(6), 565–576 (2012). https://doi.org/10.1111/j.1541-4337.2012.00210.x

    Article  Google Scholar 

  3. Zhang, Y., Zhu, K., He, S., Tan, L., Kong, X.: Characterizations of high purity starches isolated from five different jackfruit cultivars. Food Hydrocoll. 52, 785–794 (2016). https://doi.org/10.1016/j.foodhyd.2015.07.037

    Article  Google Scholar 

  4. Shedge, M.S., Haldankar, P.M., Ahammed Shabeer, T.P., Pawar, C.D., Kasture, V.V., Khandekar, R.G., Khapare, L.S.: Jackfruit: functional component related with human health and its application in food industry. Pharma Innov. J. 11(6), 824–830 (2022)

    Google Scholar 

  5. Zhang, Y., Zhang, Y., Xu, F., Li, S., Tan, L.: Structural characterization of starches from Chinese jackfruit seeds (Artocarpus heterophyllus Lam). Food Hydrocoll. 80, 141–148 (2018). https://doi.org/10.1016/j.foodhyd.2018.02.015

    Article  Google Scholar 

  6. Zhang, Y., Li, B., Xu, F., He, S., Zhang, Y., Sun, L., Tan, L.: Jackfruit starch: Composition, structure, functional properties, modifications and applications. Trends Food Sci. Technol. 107, 268–283 (2021). https://doi.org/10.1016/j.tifs.2020.10.041

    Article  Google Scholar 

  7. Trejo Rodríguez, I.S., Alcántara Quintana, L.E., Algara Suarez, P., Ruiz Cabrera, M.A., Grajales Lagunes, A.: physicochemical properties, antioxidant capacity, prebiotic activity and anticancer potential in human cells of jackfruit (Artocarpus heterophyllus) seed flour. Molecules (Basel, Switzerland) 26(16), 4854 (2021). https://doi.org/10.3390/molecules26164854

    Article  Google Scholar 

  8. Eke-Ejiofor, J., Beleya, E.A., Onyenorah, N.I.: The effect of processing methods on the functional and compositional properties of jackfruit seed flour. Int. J. Nutr. Food Sci. 3(3), 166–173 (2014)

    Article  Google Scholar 

  9. Ocloo, F.C.K., Bansa, D., Boatin, R., Adom, T., Agbemavor, W.S.: Physico-chemical, functional and pasting characteristics of flour produced from Jackfruits (Artocarpus heterophyllus) seeds. Agric. Biol. J. N. Am. 1(5), 903–908 (2010)

    Article  Google Scholar 

  10. Gupta, A.K., Rather, M.A., Kumar Jha, A.K., Shashank, A., Singhal, S., Sharma, M., Pathak, U., Sharma, D., Mastinu, A.: Artocarpus lakoocha roxb and Artocarpus heterophyllus lam flowers: new sources of bioactive compounds. Plants 9(10), 1329 (2020). https://doi.org/10.3390/plants9101329

    Article  Google Scholar 

  11. Amadi, J.A., Ihemeje, A., Afam-Anene, O.C.: Nutrient and phytochemical composition of jackfruit (Artocarpus heterophyllus) pulp, seeds and leaves. Int. J. Innov. Food Nutr. Sustain. Agric. 6(3), 27–32 (2018)

    Google Scholar 

  12. Soong, Y.-Y., Barlow, P.J.: Antioxidant activity and phenolic content of selected fruit seeds. Food Chem. 88, 411–417 (2004)

    Article  Google Scholar 

  13. Karthy, E.S., Ranjitha, P., Mohankumar, A.: Antimicrobial potential of plant seed extracts against multi drug resistant Methicillin Resistant Staphylococcus aureus (MDR-MRSA). Int. J. Biol. 1, 34–40 (2009)

    Article  Google Scholar 

  14. Liu, Y.P., Yu, X.M., Zhang, W., Wang, T., Jiang, B., Tang, H.X., Su, Q.T., Fu, Y.H.: Prenylated chromones and flavonoids from Artocarpus heterophyllus with their potential antiproliferative and anti-inflammatory activities. Bioorg. Chem. 101, 104030 (2020). https://doi.org/10.1016/j.bioorg.2020.104030

    Article  Google Scholar 

  15. Zheng, Z.P., Chen, S., Wang, S., Wang, X.C., Cheng, K.W., Wu, J.J., Yang, D., Wang, M.: Chemical components and tyrosinase inhibitors from the twigs of Artocarpus heterophyllus. J. Agric. Food Chem. 57(15), 6649–6655 (2009). https://doi.org/10.1021/jf9014685

    Article  Google Scholar 

  16. Ayar, A., Aksahin, M., Mesci, S., Yazgan, B., Gül, M., Yıldırım, T.: Antioxidant, cytotoxic activity and pharmacokinetic studies by swiss adme, molinspiration, osiris and DFT of PhTAD-substituted dihydropyrrole derivatives. Curr. Comput. Aided Drug Des. 18(1), 52–63 (2022). https://doi.org/10.2174/1573409917666210223105722

    Article  Google Scholar 

  17. Kumar, V., Chavan, S.M., Jain, S.K., Salvi, B.L., Jain, N.K., Kumar, A., Meena, K.K.: Peeling of tough skinned fruits and vegetables: a review. Int. J. Chem. Stud. 7(2), 1825–1829 (2019)

    Google Scholar 

  18. Senanayake, S., Gunaratne, A., Ranaweera, K.K.D.S., Bamunuarachchi, A.: Effect of heat–moisture treatment on digestibility of different cultivars of sweet potato (Ipomea batatas (L.) Lam) starch. Food Sci. Nutr. 2(4), 398–402 (2014)

    Article  Google Scholar 

  19. Sujka, M., Jamroz, J.: Characteristics of pores in native and hydrolyzed starch granules. Starch/Stärke 62(2010), 229–235 (2013)

    Google Scholar 

  20. AOAC.: Official Methods of Analysis of AOAC International., 17a ed., Gaithersburg,( 2000). Letimer, G. W. Jr.: Official Methods of Analysis of AOAC International, 21st Ed (2019)

  21. Adebayo, G.B., Otunola, G.A., Ajao, T.A.: Physicochemical, microbiological and sensory characteristics of kunu prepared from millet, maize and guinea corn and stored at selected temperatures. Adv. J. Food Sci. Technol. 2(1), 41–46 (2010)

    Google Scholar 

  22. Williams, V.R., Wu, W.T., Tsai, H.Y., Bates, H.G.: Rice starch, varietal differences in amylose content of rice starch. J. Agric. Food Chem. 6(1), 47–48 (1958)

    Article  Google Scholar 

  23. Juan, G., Luis, A., David, B.: Isolation and molecular characterization of Makal (Xanthosoma yucatanensis) starch. Starch 58, 300–307 (2006)

    Article  Google Scholar 

  24. Okaka, J.C., Potter, N.N.: Functional and storage properties of cowpea-wheat flour blends in bread making. J. Food Sci. 42, 828–833 (1977)

    Article  Google Scholar 

  25. Sosulski, F.W., Garatt, M.O., Slinkard, A.E.: Functional properties of ten legume flours. Int. J. Food Sci. Technol. 9, 66–69 (1976)

    Google Scholar 

  26. Balasubramanian, S., Sharma, R., Kaur, J., Bhardwaj, N.: Characterization of modified pearl millet (Pennisetum typhoides) starch. J. Food Sci. Technol. 51(2), 294–300 (2014)

    Article  Google Scholar 

  27. Trott, O., Olson, A.J.: Auto Dock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31(2), 455–461 (2010). https://doi.org/10.1002/jcc.21334

    Article  Google Scholar 

  28. Tan, J., Zhang, X., Wang, X., Xu, C., Chang, S., Wu, H., Wang, T., Liang, H., Gao, H., Zhou, Y., Zhu, Y.: Structural basis of assembly and torque transmission of the bacterial flagellar motor. Cell 184(10), 2665–2679 (2021). https://doi.org/10.1016/j.cell.2021.03.057

    Article  Google Scholar 

  29. Noor, F., Rahman, M.J., Mahomud, M.S., Akter, M.S., Talukder, M.A.I., Ahmed, M.: Physicochemical properties of flour and extraction of starch from jackfruit seed. Int. J. Nutr. Food Sci 3(4), 347 (2014). https://doi.org/10.11648/j.ijnfs.20140304.27

    Article  Google Scholar 

  30. Lin, J.H., Lee, S.Y., Chang, Y.H.: Effect of acid–alcohol treatment on the molecular structure and physicochemical properties of maize and potato starches. Carbohydr. Polym. 53(4), 475–482 (2003)

    Article  Google Scholar 

  31. Saman, W.R., Yuliasih, I., Sugiarto, M.: Physicochemical characteristics and functional properties of white sweet potato starch. Int. J. Eng. Manag. Res. 9(3), 2250–2758 (2019). https://doi.org/10.2139/ssrn.3534954

    Article  Google Scholar 

  32. Dutta, H., Paul, S.K., Kalita, D., Mahanta, C.L.: Effect of acid concentration and treatment time on acid–alcohol modified jackfruit seed starch properties. Food Chem. 128(2), 284–291 (2011)

    Article  Google Scholar 

  33. Swami, S.B., Kalse, S.B.: Jackfruit (Artocarpus heterophyllus): Biodiversity, nutritional contents and health. Bioact. Mol. Food (2018). https://doi.org/10.1007/978-3-319-54528-8_87-1

    Article  Google Scholar 

  34. Zhanga, H., Houa, H., Liub, P., Wanga, W., Donga, H.: Effects of acid hydrolysis on the physicochemical properties of pea starch and its film forming capacity. Food Hydrocoll. 87, 173–179 (2019)

    Article  Google Scholar 

  35. Sujka, M.: Ultrasonic modification of starch–Impact on granules porosity. Ultrason. Sonochem. 37, 424–429 (2017). https://doi.org/10.1016/j.ultsonch.2017.02.001

    Article  Google Scholar 

  36. Sy Mohamad, S.F., Mohd Said, F., Abdul Munaim, M.S., Mohamad, S., Wan-Sulaiman, W.M.A.: Proximate composition, minerals contents, functional properties of Mastura variety jackfruit (Artocarpus heterophyllus) seeds and lethal effects of its crude extract on zebrafish (Danio rerio) embryos. Food Res. 3(5), 546–555 (2019). https://doi.org/10.26656/fr.2017.3(5).095

    Article  Google Scholar 

  37. Kushwaha, R., Fatima, N.T., Singh, M., Singh, V., Kaur, S., Puranik, V., Kaur, D.: Effect of cultivar and maturity on functional properties, low molecular weight carbohydrate, and antioxidant activity of Jackfruit seed flour. J. Food Process. Preserv. 45(2), 15146 (2021). https://doi.org/10.1111/jfpp.15146

    Article  Google Scholar 

  38. Marta, H., Tensiska, T.: Functional and amylographic properties of physically-modified sweet potato starch. KnE Life Sci. 2, 689–700 (2017). https://doi.org/10.18502/kls.v2i6.1091

    Article  Google Scholar 

  39. Babu, A.S., Parimalavalli, R.: Effect of starch isolation method on properties of sweet potato starch. The annals of the university of Dunarea de Jos of Galati Fascicle VI. Food Technol. 38(1), 48 (2014)

    Google Scholar 

  40. Iheagwara, M.C.: Isolation, modification and characterization of sweet potato (Ipomoea batatas L (Lam)) starch. J. Food Process. Technol. 4(1), 1–6 (2013)

    Google Scholar 

  41. Zia-ud-Din, A., Xiong, H., Fei, P.: Physical and chemical modification of starches: a review. Crit. Rev. Food Sci. Nutr. 57(12), 2691–2705 (2017). https://doi.org/10.1080/10408398.2015.1087379

    Article  Google Scholar 

  42. Samal, H.B., Das, J.K., Mahapatra, R.K., Suar, M.: Molecular modeling, simulation and virtual screening of MurD ligase protein from Salmonella typhimurium LT2. J. Pharmacol. Toxicol Methods 73, 37–41 (2015). https://doi.org/10.1016/j.vascn.2015.03.005

    Article  Google Scholar 

  43. Kesharwani, A., Chaurasia, D.K., Katara, P.: Repurposing of FDA approved drugs and their validation against potential drug targets for Salmonella enterica through molecular dynamics simulation. J. Biomol. Struct. Dyn. (2020). https://doi.org/10.1080/07391102.2021.1880482

    Article  Google Scholar 

  44. Mahanthesh, M.T., Ranjith, D., Yaligar, R., Jyothi, R., Narappa, G., Ravi, M.V.: Swiss ADME prediction of phytochemicals present in Butea monosperma (Lam.) Taub. J. Pharmacogn. Phytochem. 9(3), 799–1809 (2020)

    Google Scholar 

  45. Shahzan, M.S., Girija, A.S., Priyadharsini, J.V.: A computational study targeting the mutated L321F of ERG11 gene in C. albicans, associated with fluconazole resistance with bioactive compounds from Acacia nilotica. J. Mycol. Médicale 29(4), 303–309 (2019)

    Article  Google Scholar 

  46. Maurya, P., Pandey, P., Khan, F., Mishra, R., Chaudhary, R., Singh, S.K.: Study to elucidate the inhibitory potential of selected flavonoids against jab1 in cervical cancer. Biointerface Res. Appl. Chem. 12(1), 1290–1303 (2022)

    Google Scholar 

  47. Sriram, K., Insel, P.A.G.: protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol. Pharmacol. 93, 251–258 (2018)

    Article  Google Scholar 

  48. Saboury, A.A.: Enzyme inhibition and activation: a general theory. JICS 6, 219–229 (2009)

    Article  Google Scholar 

  49. Anastassiadis, T., Deacon, S., Devarajan, K., et al.: Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat. Biotechnol. 29, 1039–1045 (2011)

    Article  Google Scholar 

  50. Paton, N.I., Stöhr, W., Arenas-Pinto, A., Fisher, M., Williams, I., Johnson, M., Orkin, C., Chen, F., Lee, V., Winston, A., Gompels, M.: Protease inhibitor monotherapy for long-term management of HIV infection: a randomised, controlled, open-label, non-inferiority trial. Lancet HIV 2(10), 417–426 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Basil Spices, Vadattupara, Kerala (www.basilspices.com) for providing the jackfruit seed samples. The authors also thank the technical and human support provided by the Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India for conducting the project.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. Material preparation, data collection, and analysis were performed by V and guided by SB. The first draft of the manuscript was prepared by SB and evaluated by AL, S, AK and MK. AKS, AK, and AK contributed to the in-silico study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sonika Banyal.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishal, Banyal, S., Shukla, A.K. et al. Effect of Modification on Quality Parameters of Jackfruit (Atrocarpus heterophyllus) Seed Starch to Valorize its Food Potential and In-Silico Investigation of the Pharmacological Compound Against Salmonellosis. Waste Biomass Valor 14, 1597–1610 (2023). https://doi.org/10.1007/s12649-022-01945-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01945-0

Keywords

Navigation