Skip to main content
Log in

Solution Plasma Process and Bioactivity Against Yeast and Bacteria for Selenium Nanoparticle Synthesis in an Ethanol–Water Mixture

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

The solution plasma process (SPP) is a novel electrical discharge process for the green synthesis of nanomaterials, in which an atmospheric nonequilibrium plasma is generated at room temperature in a liquid environment such as water or an organic solvent; or a mixture of both.

Methods

In this study, SPP was employed as a green approach for synthesizing selenium nanoparticles (Se NPs) in an ethanol–water solution at room temperature. The prepared Se NPs were comprehensively characterized using ultraviolet–visible (UV–Vis) spectrophotometry, fourier transform infrared spectroscopy, X-ray diffraction, dynamic light scattering particle size analysis, scanning electron microscopy, and transmission electron microscopy.

Results

The results showed that the Se NPs in the ethanol–water solution were uniform flower-like nanostructures with diameters ranging from 50 to 100 nm. The as-prepared Se NPs were of high purity and underwent partial oxidation.

Conclusion

The synthesized Se NPs exhibited notable antimicrobial properties against the pathogenic Escherichia coli and Staphylococcus aureus bacteria, and Candida albicans yeast.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available in the paper and its supplementary materials. The raw data are available from the corresponding author upon request.

References

  1. Bhattacharya, P.T., Misra, S.R., Hussain, M.: Nutritional aspects of essential trace elements in oral health and disease: an extensive review. Scientifica. (2016). https://doi.org/10.1155/2016/5464373

    Article  Google Scholar 

  2. Kieliszek, M., Bano, I., Zare, H.: A comprehensive review on selenium and its effects on human health and distribution in Middle Eastern countries. Biol. Trace Elem. Res. (2021). https://doi.org/10.1007/s12011-021-02716-z

    Article  Google Scholar 

  3. de Souza, D.F., da Silva, M.C.S., de Paula Alves, M., Fuentes, D.P., Porto, L.E.O., de Oliveira, P.V., Kasuya, M.C.M., Eller, M.R.: By-products as substrates for production of selenium-enriched Pleurotus ostreatus mushrooms. Waste Biomass Valoriz. 13, 989–1001 (2022)

    Article  Google Scholar 

  4. Zhang, J., Wang, H., Yan, X., Zhang, L.: Comparison of short-term toxicity between nano-Se and selenite in mice. Life Sci. 76, 1099–1109 (2005)

    Article  Google Scholar 

  5. Tran, P.A., Webster, T.J.: Selenium nanoparticles inhibit Staphylococcus aureus growth. Int. J. Nanomed. 6, 1553 (2011)

    Google Scholar 

  6. Chen, T., Wong, Y.-S., Zheng, W., Bai, Y., Huang, L.: Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells. Coll. Surf. B Biointerfaces 67, 26–31 (2008)

    Article  Google Scholar 

  7. Ramamurthy, C., Sampath, K., Arunkumar, P., Kumar, M.S., Sujatha, V., Premkumar, K., Thirunavukkarasu, C.: Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess. Biosyst. Eng. 36, 1131–1139 (2013)

    Article  Google Scholar 

  8. Wang, H., Zhang, J., Yu, H.: Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic. Biol. Med. 42, 1524–1533 (2007)

    Article  Google Scholar 

  9. Vahidi, H., Barabadi, H., Saravanan, M.: Emerging selenium nanoparticles to combat cancer: a systematic review. J. Clust. Sci. 31, 301–309 (2020)

    Article  Google Scholar 

  10. Tran, P.A., Sarin, L., Hurt, R.H., Webster, T.J.: Opportunities for nanotechnology-enabled bioactive bone implants. J. Mater. Chem. 19, 2653–2659 (2009)

    Article  Google Scholar 

  11. Bao, P., Chen, Z., Tai, R.-Z., Shen, H.-M., Martin, F.L., Zhu, Y.-G.: Selenite-induced toxicity in cancer cells is mediated by metabolic generation of endogenous selenium nanoparticles. J. Proteome Res. 14, 1127–1136 (2015)

    Article  Google Scholar 

  12. Khalid, A., Tran, P.A., Norello, R., Simpson, D.A., O’Connor, A.J., Tomljenovic-Hanic, S.: Intrinsic fluorescence of selenium nanoparticles for cellular imaging applications. Nanoscale 8, 3376–3385 (2016)

    Article  Google Scholar 

  13. Luo, C., Xu, Y., Zhu, Y., Liu, Y., Zheng, S., Liu, Y., Langrock, A., Wang, C.: Selenium@ mesoporous carbon composite with superior lithium and sodium storage capacity. ACS Nano 7, 8003–8010 (2013)

    Article  Google Scholar 

  14. Chaudhary, S., Mehta, S.: Selenium nanomaterials: applications in electronics, catalysis and sensors. J. Nanosci. Nanotechnol 14, 1658–1674 (2014)

    Article  Google Scholar 

  15. Peng, X., Wang, L., Zhang, X., Gao, B., Fu, J., Xiao, S., Huo, K., Chu, P.K.: Reduced graphene oxide encapsulated selenium nanoparticles for high-power lithium–selenium battery cathode. J. Power Sources 288, 214–220 (2015)

    Article  Google Scholar 

  16. Ratushnaya, E., Kirova, Y.I., Suchkov, M., Drevko, B., Borodulin, V.: Synthesis and antibacterial activity of organoselenium compounds. Pharm. Chem. J. 36, 652–653 (2002)

    Article  Google Scholar 

  17. Xia, Y.-Y.: Synthesis of selenium nanoparticles in the presence of silk fibroin. Mater. Lett. 61, 4321–4324 (2007)

    Article  Google Scholar 

  18. Barnaby, S.N., Frayne, S.H., Fath, K.R., Banerjee, I.A.: Growth of Se nanoparticles on kinetin assemblies and their biocompatibility studies. Soft Mater. 9, 313–334 (2011)

    Article  Google Scholar 

  19. Fardsadegh, B., Jafarizadeh-Malmiri, H.: Aloe vera leaf extract mediated green synthesis of selenium nanoparticles and assessment of their in vitro antimicrobial activity against spoilage fungi and pathogenic bacteria strains. Green Process. Synth. 8, 399–407 (2019)

    Article  Google Scholar 

  20. Zeng, H., Combs Jr, G.F.: Selenium as an anticancer nutrient: roles in cell proliferation and tumor cell invasion. J. Nutr. Biochem. 19, 1–7 (2008)

    Article  Google Scholar 

  21. Lee, K.H., Jeong, D.: Bimodal actions of selenium essential for antioxidant and toxic pro-oxidant activities: the selenium paradox. Mol. Med. Rep. 5, 299–304 (2012)

    Google Scholar 

  22. Kora, A.J.: Tree gum stabilised selenium nanoparticles: characterisation and antioxidant activity. IET Nanobiotechnol. 12, 658–662 (2018)

    Article  Google Scholar 

  23. Benko, I., Nagy, G., Tanczos, B., Ungvari, E., Sztrik, A., Eszenyi, P., Prokisch, J., Banfalvi, G.: Subacute toxicity of nano-selenium compared to other selenium species in mice. Environ. Toxicol. Chem. 31, 2812–2820 (2012)

    Article  Google Scholar 

  24. Hu, C., Li, Y., Xiong, L., Zhang, H., Song, J., Xia, M.: Comparative effects of nano elemental selenium and sodium selenite on selenium retention in broiler chickens. Anim. Feed Sci. Technol. 177, 204–210 (2012)

    Article  Google Scholar 

  25. Ahmed, S., Brockgreitens, J., Xu, K., Abbas, A.: Sponge-supported synthesis of colloidal selenium nanospheres. Nanotechnology. 27, 465601 (2016)

    Article  Google Scholar 

  26. Shah, C.P., Dwivedi, C., Singh, K.K., Kumar, M., Bajaj, P.N.: Riley oxidation: a forgotten name reaction for synthesis of selenium nanoparticles. Mater. Res. Bull. 45, 1213–1217 (2010)

    Article  Google Scholar 

  27. Kamnev, A.A., Mamchenkova, P.V., Dyatlova, Y.A., Tugarova, A.: V. FTIR spectroscopic studies of selenite reduction by cells of the rhizobacterium Azospirillum brasilense Sp7 and the formation of selenium nanoparticles. J. Mol. Struct. 1140, 106–112 (2017)

    Article  Google Scholar 

  28. Quintana, M., Haro-Poniatowski, E., Morales, J., Batina, N.: Synthesis of selenium nanoparticles by pulsed laser ablation. Appl. Surf. Sci. 195, 175–186 (2002)

    Article  Google Scholar 

  29. Ye, X., Chen, L., Liu, L., Bai, Y.: Electrochemical synthesis of selenium nanoparticles and formation of sea urchin-like selenium nanoparticles by electrostatic assembly. Mater. Lett. 196, 381–384 (2017)

    Article  Google Scholar 

  30. Ionin, A., Ivanova, A., Khmel’nitskii, R., Klevkov, Y., Kudryashov, S., Mel’nik, N., Nastulyavichus, A., Rudenko, A., Saraeva, I., Smirnov, N.: Milligram-per-second femtosecond laser production of Se nanoparticle inks and ink-jet printing of nanophotonic 2D-patterns. Appl. Surf. Sci. 436, 662–669 (2018)

    Article  Google Scholar 

  31. Mesbahi-Nowrouzi, M., Mollania, N.: Purification of selenate reductase from Alcaligenes sp. CKCr-6A with the ability to biosynthesis of selenium nanoparticle: enzymatic behavior study in imidazolium based ionic liquids and organic solvent. J. Mol. Liq. 249, 1254–1262 (2018)

    Article  Google Scholar 

  32. Takai, O.: Solution plasma processing (SPP). Pure Appl. Chem. 80, 2003–2011 (2008)

    Article  Google Scholar 

  33. Saito, N., Hieda, J., Takai, O.: Synthesis process of gold nanoparticles in solution plasma. Thin Solid Films 518, 912–917 (2009)

    Article  Google Scholar 

  34. Saito, G., Hosokai, S., Tsubota, M., Akiyama, T.: Synthesis of copper/copper oxide nanoparticles by solution plasma. J. Appl. Phys. 110, 023302 (2011)

    Article  Google Scholar 

  35. Bratescu, M.A., Cho, S.-P., Takai, O., Saito, N.: Size-controlled gold nanoparticles synthesized in solution plasma. J. Phys. Chem. C 115, 24569–24576 (2011)

    Article  Google Scholar 

  36. Cui, B., Hu, B., Liu, J., Wang, M., Song, Y., Tian, K., Zhang, Z., He, L.: Solution-plasma-assisted bimetallic oxide alloy nanoparticles of Pt and Pd embedded within two-dimensional Ti3C2T x nanosheets as highly active electrocatalysts for overall water splitting. ACS Appl. Mater. Interfaces 10, 23858–23873 (2018)

    Article  Google Scholar 

  37. Kim, S.M., Kim, G.S., Lee, S.Y.: Effects of PVP and KCl concentrations on the synthesis of gold nanoparticles using a solution plasma processing. Mater. Lett. 62, 4354–4356 (2008)

    Article  Google Scholar 

  38. Panomsuwan, G., Chiba, S., Kaneko, Y., Saito, N., Ishizaki, T.: In situ solution plasma synthesis of nitrogen-doped carbon nanoparticles as metal-free electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 2, 18677–18686 (2014)

    Article  Google Scholar 

  39. Panomsuwan, G., Saito, N., Ishizaki, T.: Electrocatalytic oxygen reduction activity of boron-doped carbon nanoparticles synthesized via solution plasma process. Electrochem. Commun. 59, 81–85 (2015)

    Article  Google Scholar 

  40. Cho, S.-P., Bratescu, M.A., Saito, N., Takai, O.: Microstructural characterization of gold nanoparticles synthesized by solution plasma processing. Nanotechnology 22, 455701 (2011)

    Article  Google Scholar 

  41. Sudare, T., Ueno, T., Watthanaphanit, A., Saito, N.: Accelerated nanoparticles synthesis in alcohol–water-mixture-based solution plasma. Phys. Chem. Chem. Phys. 17, 30255–30259 (2015)

    Article  Google Scholar 

  42. Srivastava, N., Mukhopadhyay, M.: Green synthesis and structural characterization of selenium nanoparticles and assessment of their antimicrobial property. Bioproc. Biosyst. Eng. 38, 1723–1730 (2015)

    Article  Google Scholar 

  43. Salem, S.S., Fouda, M.M., Fouda, A., Awad, M.A., Al-Olayan, E.M., Allam, A.A., Shaheen, T.I.: Antibacterial, cytotoxicity and larvicidal activity of green synthesized selenium nanoparticles using Penicillium corylophilum. J. Clust. Sci. 32, 351–361 (2021)

    Article  Google Scholar 

  44. Goh, E., Xu, X., McCormick, P.: Effect of particle size on the UV absorbance of zinc oxide nanoparticles. Scr. Mater. 78, 49–52 (2014)

    Article  Google Scholar 

  45. Kasture, M., Patel, P., Prabhune, A., Ramana, C., Kulkarni, A., Prasad, B.: Synthesis of silver nanoparticles by sophorolipids: effect of temperature and sophorolipid structure on the size of particles. J. Chem. Sci. 120, 515–520 (2008)

    Article  Google Scholar 

  46. Yang, F., Tang, Q., Zhong, X., Bai, Y., Chen, T., Zhang, Y., Li, Y., Zheng, W.: Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles. Int. J. Nanomed. 7, 835 (2012)

    Google Scholar 

  47. Alagesan, V., Venugopal, S.: Green synthesis of selenium nanoparticle using leaves extract of withania somnifera and its biological applications and photocatalytic activities. Bionanoscience 9, 105–116 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially funded by the Hanoi University of Science and Technology Focused Program (Project No. T2020-PC-214). This study was funded by the Vietnam-Asia Joint Program (Project No. NĐT.74.e-ASIA/19).

Funding

This work was financially funded by the Hanoi University of Science and Technology Focused Program (Project No. T2020-PC-214).

Author information

Authors and Affiliations

Authors

Contributions

THN: conceptualization, writing–original draft; HTL: methodology, writing, review, and editing; TTV: data curation, formal analysis, writing, review, and editing; MTL: data curation and formal analysis; XHN: resources, supervision, funding acquisition, writing, review, and editing; DDL: writing, review, and editing; SWC: writing, review and editing; DDN: conceptualization, writing, review, and editing; and TMN: supervision methodology, data curation, and formal analysis.

Corresponding authors

Correspondence to Xuan Hoan Nguyen, Duong Duc La, D. Duc Nguyen or Tuong Manh Nguyen.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.H., Le, H.T., Vu, T.T. et al. Solution Plasma Process and Bioactivity Against Yeast and Bacteria for Selenium Nanoparticle Synthesis in an Ethanol–Water Mixture. Waste Biomass Valor 14, 583–591 (2023). https://doi.org/10.1007/s12649-022-01919-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01919-2

Keywords

Navigation