Skip to main content
Log in

Ultrasound-Assisted Extraction of Phytochemicals from Java Plum (Syzygium cumini L.) Pomace: Process Optimization, Phytochemical Characterization Using HPLC, FTIR, SEM and Mineral Profiling

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Java plum pomace is rich in bioactive compounds and has potential to use in numerous ways, where extraction is one of them. Ultrasound assisted extraction (UAE) using acidified aqueous ethanol (1:20 solid:liquid, w/v) acidified with 0.1% HCl was employed to optimize the extraction conditions (ultrasound power, extraction temperature, time, and ethanol concentration) for phytochemicals from java plum fruit pomace using response surface methodology. The mathematical model suggested a high coefficient of determination for optimum conditions as 366.25 W ultrasound power, 37.61 °C temperature for 47.48 min using 70% ethanol for the extraction of phytochemicals. Actual yield of phytochemicals was almost same to predicted yields. While comparing UAE with conventional extraction (CE), phytochemical constituents, antioxidant activities, and minerals except potassium, copper, and manganese were reported higher in UAE as confirmed using HPLC, FTIR, AES and SEM analysis. It can be concluded that the optimized conditions can be used for the better extraction of phytochemicals from java plum pomace and its effective utilization.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are included in this article.

References

  1. Mazzoni, L., Perez-Lopez, P., Giampieri, F., Alvarez-Suarez, J.M., Gasparrini, M., Forbes-Hernandez, T.Y., Quiles, J.L., Mezzetti, B., Battino, M.: The genetic aspects of berries: from field to health. J. Sci. Food Agric. 96, 365–371 (2016). https://doi.org/10.1002/jsfa.7216

    Article  Google Scholar 

  2. Kaur, N., Aggarwal, P., Kumar, V., Kaur, S.: Influence of different extraction techniques on the extraction of phytochemicals and antioxidant activities from Syzygium cumini (jamun) pomace using Taguchi orthogonal array design: a qualitative and quantitative approach. Biomass Convers. Biorefin. (2022). https://doi.org/10.1007/s13399-022-02826-1

    Article  Google Scholar 

  3. Kaur, N., Aggarwal, P.: Development and characterization of packing, microstructural, physico- and phytochemical attributes of potential functional jamun (Syzygium cumini) pomace powder for direct compression: high antioxidant nutraceutical tablets. Int. J. Food Sci. Technol. (2022). https://doi.org/10.1111/ijfs.15933

    Article  Google Scholar 

  4. Pietta, P.G.: Flavonoids as antioxidants. J. Nat. Prod. 63, 1035–1042 (2000). https://doi.org/10.1021/np9904509

    Article  Google Scholar 

  5. Suradkar, N.G., Pawar, V.S., Shere, D.M.: Physicochemical, proximate and bioactive composition of jamun (Syzygium cuminii L.) fruit. Int. J. Chem. Stud. 5, 470–472 (2017). https://doi.org/10.1007/s13197-011

    Article  Google Scholar 

  6. Espada-Bellido, E., Ferreiro-González, M., Carrera, C., Palma, M., Barroso, C.G., Barbero, G.F.: Optimization of the ultrasound-assisted extraction of anthocyanins and total phenolic compounds in mulberry (Morus nigra) pulp. Food Chem. 219, 23–32 (2017). https://doi.org/10.1016/j.foodchem.2016.09.122

    Article  Google Scholar 

  7. Chemat, F., Rombaut, N., Sicaire, A.G., Meullemiestre, A., Fabiano-Tixier, A.S., Abert-Vian, M.: Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 34, 540–560 (2017). https://doi.org/10.1016/j.ultsonch.2016.06.035

    Article  Google Scholar 

  8. Oancea, S., Grosu, C., Ketney, O., Stoia, M.: Conventional and ultrasound-assisted extraction of anthocyanins from blackberry and sweet cherry cultivars. Acta Chim. Slov. 60, 383–389 (2013)

    Google Scholar 

  9. Qin, B., Liu, X., Cui, H., Ma, Y., Wang, Z., Han, J.: Aqueous two-phase assisted by ultrasound for the extraction of anthocyanins from Lycium ruthenicum Murr. Prep. Biochem. Biotechnol. 47, 881–888 (2017). https://doi.org/10.1080/10826068.2017.1350980

    Article  Google Scholar 

  10. Vázquez-Espinosa, M., de Peredo, A.V.G., Ferreiro-González, M., Carrera, C., Palma, M., Barbero, G.F., Espada-Bellido, E.: Assessment of ultrasound assisted extraction as an alternative method for the extraction of anthocyanins and total phenolic compounds from maqui berries (Aristotelia chilensis (Mol.) Stuntz). Agronomy 9, 1–17 (2019). https://doi.org/10.3390/agronomy9030148

    Article  Google Scholar 

  11. Aliaño-González, M.J., Jarillo, J.A., Carrera, C., Ferreiro-González, M., Álvarez, J.Á., Palma, M., Ayuso, J., Barbero, G.F., Espada-Bellido, E.: Optimization of a novel method based on ultrasound-assisted extraction for the quantification of anthocyanins and total phenolic compounds in blueberry samples (Vaccinium corymbosum L.). Foods 9, 1763 (2020). https://doi.org/10.3390/foods9121763

    Article  Google Scholar 

  12. Dibazar, R., Bonat Celli, G., Brooks, M.S.L., Ghanem, A.: Optimization of ultrasound-assisted extraction of anthocyanins from lowbush blueberries (Vaccinium angustifolium Aiton). J. Berry Res. 5, 173–181 (2015). https://doi.org/10.3233/JBR-150100

    Article  Google Scholar 

  13. Khan, M.K., Abert-Vian, M., Fabiano-Tixier, A.S., Dangles, O., Chemat, F.: Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem. 119, 851–858 (2010). https://doi.org/10.1016/j.foodchem.2009.08.046

    Article  Google Scholar 

  14. Aadil, R.M., Zeng, X.A., Han, Z., Sun, D.W.: Effects of ultrasound treatments on quality of grapefruit juice. Food Chem. 141, 3201–3206 (2013). https://doi.org/10.1016/j.foodchem.2013.06.008

    Article  Google Scholar 

  15. Carrera, C., Ruiz-Rodríguez, A., Palma, M., Barroso, C.G.: Ultrasound assisted extraction of phenolic compounds from grapes. Anal. Chim. Acta 732, 100–104 (2012). https://doi.org/10.1016/j.aca.2011.11.032

    Article  Google Scholar 

  16. Jabbar, S., Abid, M., Wu, T., Hashim, M.M., Saeeduddin, M., Hu, B., Lei, S., Zeng, X.: Ultrasound-assisted extraction of bioactive compounds and antioxidants from carrot pomace: a response surface approach. J. Food Process. Preserv. 39, 1878–1888 (2015). https://doi.org/10.1111/jfpp.12425

    Article  Google Scholar 

  17. Agnieszka, M., Michał, S., Robert, K.: Selection of conditions of ultrasound-assisted, three-step extraction of ellagitannins from selected berry fruit of the rosaceae family using the response surface methodology. Food Anal. Methods 13, 1650–1665 (2020). https://doi.org/10.1007/s12161-020-01762-y

    Article  Google Scholar 

  18. Hanula, M., Wyrwisz, J., Moczkowska, M., Horbańczuk, O.K., Pogorzelska-Nowicka, E., Wierzbicka, A.: Optimization of microwave and ultrasound extraction methods of açai berries in terms of highest content of phenolic compounds and antioxidant activity. Appl. Sci. 10, 1–12 (2020). https://doi.org/10.3390/app10238325

    Article  Google Scholar 

  19. Bamba, B.S.B., Shi, J., Tranchant, C.C., Xue, S.J., Forney, C.F., Lim, L.T.: Influence of extraction conditions on ultrasound-assisted recovery of bioactive phenolics from blueberry pomace and their antioxidant activity. Molecules 23, 1–17 (2018). https://doi.org/10.3390/molecules23071685

    Article  Google Scholar 

  20. Ryu, D., Koh, E.: Application of response surface methodology to acidified water extraction of black soybeans for improving anthocyanin content, total phenols content and antioxidant activity. Food Chem. 261, 260–266 (2018). https://doi.org/10.1016/j.foodchem.2018.04.061

    Article  Google Scholar 

  21. Ang, Y.K., Sia, W.C., Khoo, H.E., Yim, H.S.: Antioxidant potential of Carica papaya peel and seed. Focus Mod. Food Ind. 1, 11–16 (2012)

    Google Scholar 

  22. Papoutsis, K., Pristijono, P., Golding, J.B., Stathopoulos, C.E., Bowyer, M.C., Scarlett, C.J., Vuong, Q.V.: Screening the effect of four ultrasound-assisted extraction parameters on hesperidin and phenolic acid content of aqueous citrus pomace extracts. Food Biosci. 21, 20–26 (2018). https://doi.org/10.1016/j.fbio.2017.11.001

    Article  Google Scholar 

  23. Kaur, N., Aggarwal, P., Kaur, N., Kaur, S.: Nutritional improvement of Bhujia by incorporating coloured bell peppers. J. Food Process. Preserv. (2022). https://doi.org/10.1111/jfpp.16569

    Article  Google Scholar 

  24. Kaur, S., Aggarwal, P., Kaur, N.: Formulations for preparation of ‘Aloo bhujia’ from medium and high sugar potato varieties. Agric. Res. J. 56, 288 (2019). https://doi.org/10.5958/2395-146x.2019.00045.0

    Article  Google Scholar 

  25. Aggarwal, P., Kaur, S., Kaur, N.: Intermediate moisture kinnow bar from low grade kinnow mandarins: phytonutritional profile, morphological characterization, and storage stability. Food Biosci. (2022). https://doi.org/10.1016/j.fbio.2022.101837

    Article  Google Scholar 

  26. Stuart, B.H.: Infrared Spectroscopy: Fundamentals and Applications. Wiley, Chichester (2004)

    Book  Google Scholar 

  27. Esclapez, M.D., García-Pérez, J.V., Mulet, A., Cárcel, J.A.: Ultrasound-assisted extraction of natural products. Food Eng. Rev. 3, 108–120 (2011). https://doi.org/10.1007/s12393-011-9036-6

    Article  Google Scholar 

  28. Kidak, R., Ince, N.H.: Ultrasonic destruction of phenol and substituted phenols: a review of current research. Ultrason. Sonochem. 13, 195–199 (2006). https://doi.org/10.1016/j.ultsonch.2005.11.004

    Article  Google Scholar 

  29. Chaves, J.O., de Souza, M.C., da Silva, L.C., Lachos-Perez, D., Torres-Mayanga, P.C., da Fonseca Machado, A.P., Forster-Carneiro, T., Vázquez-Espinosa, M., González-de-Peredo, A.V., Barbero, G.F., Rostagno, M.A.: Extraction of flavonoids from natural sources using modern techniques. Front. Chem. 8, 507887 (2020). https://doi.org/10.3389/fchem.2020.507887

    Article  Google Scholar 

  30. Cao, X., Cai, C., Wang, Y., Zheng, X.: Effects of ultrasound processing on physicochemical parameters, antioxidants, and color quality of bayberry juice. J. Food Qual. (2019). https://doi.org/10.1155/2019/7917419

    Article  Google Scholar 

  31. Tan, M.C., Tan, C.P., Ho, C.W.: Effects of extraction solvent system, time and temperature on total phenolic content of henna (Lawsonia inermis) stems. Int. Food Res. J. 20, 3117–3123 (2013)

    Google Scholar 

  32. Wang, W., Jung, J., Tomasino, E., Zhao, Y.: Optimization of solvent and ultrasound-assisted extraction for different anthocyanin rich fruit and their effects on anthocyanin compositions. LWT 72, 229–238 (2016). https://doi.org/10.1016/j.lwt.2016.04.041

    Article  Google Scholar 

  33. Goula, A.M., Thymiatis, K., Kaderides, K.: Valorization of grape pomace: drying behavior and ultrasound extraction of phenolics. Food Bioprod. Process. 100, 132–144 (2016). https://doi.org/10.1016/j.fbp.2016.06.016

    Article  Google Scholar 

  34. Sun, C., Wu, Z., Wang, Z., Zhang, H.: Effect of ethanol/water solvents on phenolic profiles and antioxidant properties of Beijing propolis extracts. Evid. Based Complement. Altern. Med. (2015). https://doi.org/10.1155/2015/595393

    Article  Google Scholar 

  35. González-Centeno, M.R., Comas-Serra, F., Femenia, A., Rosselló, C., Simal, S.: Effect of power ultrasound application on aqueous extraction of phenolic compounds and antioxidant capacity from grape pomace (Vitis vinifera L.): experimental kinetics and modeling. Ultrason. Sonochem. 22, 506–514 (2015). https://doi.org/10.1016/j.ultsonch.2014.05.027

    Article  Google Scholar 

  36. Kaderides, K., Goula, A.M., Adamopoulos, K.G.: A process for turning pomegranate peels into a valuable food ingredient using ultrasound-assisted extraction and encapsulation. Innov. Food Sci. Emerg. Technol. 31, 204–215 (2015). https://doi.org/10.1016/j.ifset.2015.08.006

    Article  Google Scholar 

  37. Fu, X., Belwal, T., Cravotto, G., Luo, Z.: Sono-physical and sono-chemical effects of ultrasound: primary applications in extraction and freezing operations and influence on food components. Ultrason. Sonochem. 60, 104726 (2020). https://doi.org/10.1016/j.ultsonch.2019.104726

    Article  Google Scholar 

  38. De Luna, S.L.R., Ramírez-Garza, R.E., Serna Saldívar, S.O.: Environmentally friendly methods for flavonoid extraction from plant material: impact of their operating conditions on yield and antioxidant properties. Sci. World J. (2020). https://doi.org/10.1155/2020/6792069

    Article  Google Scholar 

  39. Karunanithi, A., Venkatachalam, S.: Ultrasonic-assisted solvent extraction of phenolic compounds from Opuntia ficus-indica peel: phytochemical identification and comparison with soxhlet extraction. J. Food Process Eng. (2019). https://doi.org/10.1111/jfpe.13126

    Article  Google Scholar 

  40. Hu, A.J., Hao, S.T., Zheng, J., Chen, L., Sun, P.P.: Multi-frequency ultrasonic extraction of anthocyanins from blueberry pomace and evaluation of its antioxidant activity. J. AOAC Int. 104, 811–817 (2021). https://doi.org/10.1093/jaoacint/qsaa150

    Article  Google Scholar 

  41. Galván D’Alessandro, L., Dimitrov, K., Vauchel, P., Nikov, I.: Kinetics of ultrasound assisted extraction of anthocyanins from Aronia melanocarpa (black chokeberry) wastes. Chem. Eng. Res. Des. 92, 1818–1826 (2014). https://doi.org/10.1016/j.cherd.2013.11.020

    Article  Google Scholar 

  42. Ivanovic, J., Tadic, V., Dimitrijevic, S., Stamenic, M., Petrovic, S., Zizovic, I.: Antioxidant properties of the anthocyanin-containing ultrasonic extract from blackberry cultivar “Čačanska Bestrna.” Ind. Crops Prod. 53, 274–281 (2014). https://doi.org/10.1016/j.indcrop.2013.12.048

    Article  Google Scholar 

  43. Sun, Y., Qiao, L., Ye, X., Liu, D., Zhang, X., Huang, H.: The sonodegradation of caffeic acid under ultrasound treatment: relation to stability. Molecules 18, 561–573 (2013). https://doi.org/10.3390/molecules18010561

    Article  Google Scholar 

  44. Qiao, L., Ye, X., Sun, Y., Ying, J., Shen, Y., Chen, J.: Sonochemical effects on free phenolic acids under ultrasound treatment in a model system. Ultrason. Sonochem. 20, 1017–1025 (2013). https://doi.org/10.1016/j.ultsonch.2012.12.007

    Article  Google Scholar 

  45. Jabbar, S., Abid, M., Hu, B., Wu, T., Hashim, M.M., Lei, S., Zhu, X., Zeng, X.: Quality of carrot juice as influenced by blanching and sonication treatments. LWT 55, 16–21 (2014). https://doi.org/10.1016/j.lwt.2013.09.007

    Article  Google Scholar 

  46. Pereira, V.A., de Arruda, I.N.Q., Stefani, R.: Active chitosan/PVA films with anthocyanins from Brassica oleraceae (red cabbage) as time-temperature indicators for application in intelligent food packaging. Food Hydrocoll. 43, 180–188 (2015). https://doi.org/10.1016/j.foodhyd.2014.05.014

    Article  Google Scholar 

  47. Zhou, P., Wang, X., Liu, P., Huang, J., Wang, C., Pan, M., Kuang, Z.: Enhanced phenolic compounds extraction from Morus alba L. leaves by deep eutectic solvents combined with ultrasonic-assisted extraction. Ind. Crops Prod. 120, 147–154 (2018). https://doi.org/10.1016/j.indcrop.2018.04.071

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [NK, PA]; Methodology: [NK]; Formal analysis and investigation: [NK]; Writing—original draft preparation: [NK]; Writing—review and editing: [NK, VK, SK]; Funding acquisition: [PA]; Resources: [PA]; Supervision: [PA].

Corresponding author

Correspondence to Navjot Kaur.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8733 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, N., Aggarwal, P., Kumar, V. et al. Ultrasound-Assisted Extraction of Phytochemicals from Java Plum (Syzygium cumini L.) Pomace: Process Optimization, Phytochemical Characterization Using HPLC, FTIR, SEM and Mineral Profiling. Waste Biomass Valor 14, 949–961 (2023). https://doi.org/10.1007/s12649-022-01915-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01915-6

Keywords

Navigation