Skip to main content
Log in

Evaluation of the High Metals-Containing Coal Gasification Fine Slag as a High-Performance Adsorbent for Malachite Green Adsorption

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The concept of treating waste with waste is of great significance to realize the sustainable development of human society. In this work, the high metals-containing coal gasification fine slag (CGFS) from the coal gasification industry is directly transformed into an excellent adsorbent for malachite green wastewater adsorption. CGFS exhibits a rough and porous structure, which is mainly composed of SiO2 and various metal compounds. Numerous spherical structures which are generated by the melting of inorganic substances are distributed on the surface of CGFS with a large number of flocculent carbon structures covering the substrate or interspersed. Experiments confirm that CGFS is a competitive adsorbent for the removal of malachite green due to its low cost and high adsorption performance. The theoretical maximum adsorption capacity of CGFS at 298 K predicted by the Langmuir model reached as high as 1787 mg/g and the capacity increases with the temperature. The removal efficiency reached 100% for CGFS at a solid–liquid ratio of 0.05 g/100 mL and a malachite green concentration of 100 mg/L. A dominant role of chemisorption was confirmed by the analytical results of the pseudo-second-order model and the Freundlich model combined with the characterization results. The metal oxides and carbon structures in CGFS are presumed to be the main active adsorption sites. From the fitting of the intraparticle diffusion model, the adsorption rate was limited first by membrane diffusion and then by intraparticle diffusion as the adsorption process proceeded.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article or sources of data citation are provided.

References

  1. Fayazi, M., Afzali, D., Ghanei-Motlagh, R., et al.: Synthesis of novel sepiolite-iron oxide-manganese dioxide nanocomposite and application for lead(II) removal from aqueous solutions. Environ. Sci. Pollut. Res. 26, 18893–18903 (2019). https://doi.org/10.1007/s11356-019-05119-9

    Article  Google Scholar 

  2. Fayazi, M., Taher, M.A., Afzali, D., et al.: Enhanced Fenton-like degradation of methylene blue by magnetically activated carbon/hydrogen peroxide with hydroxylamine as Fenton enhancer. J. Mol. Liq. 216, 781–787 (2016). https://doi.org/10.1016/j.molliq.2016.01.093

    Article  Google Scholar 

  3. Gupta, V.K., Pathania, D., Agarwal, S., et al.: De-coloration of hazardous dye from water system using chemically modified Ficus carica adsorbent. J. Mol. Liq. 174, 86–94 (2012). https://doi.org/10.1016/j.molliq.2012.07.017

    Article  Google Scholar 

  4. Pei, Y., Wang, M., Tian, D., et al.: Synthesis of core-shell SiO2@MgO with flower like morphology for removal of crystal violet in water. J. Colloid Interface Sci. 453, 194–201 (2015). https://doi.org/10.1016/j.jcis.2015.05.003

    Article  Google Scholar 

  5. Asfaram, A., Ghaedi, M., Ghezelbash, G.R., et al.: Application of experimental design and derivative spectrophotometry methods in optimization and analysis of biosorption of binary mixtures of basic dyes from aqueous solutions. Ecotoxicol. Environ. Saf. 139, 219–227 (2017). https://doi.org/10.1016/j.ecoenv.2017.01.043

    Article  Google Scholar 

  6. Zhang, J., Li, Y., Zhang, C., et al.: Adsorption of malachite green from aqueous solution onto carbon prepared from Arundo donax root. J. Hazard. Mater. 150, 774–782 (2008). https://doi.org/10.1016/j.jhazmat.2007.05.036

    Article  Google Scholar 

  7. Srivastava, S., Sinha, R., Roy, D.: Toxicological effects of malachite green. Aquat. Toxicol. 66, 319–329 (2004). https://doi.org/10.1016/j.aquatox.2003.09.008

    Article  Google Scholar 

  8. Rao, K.V.: Inhibition of DNA synthesis in primary rat hepatocyte cultures by malachite green: a new liver tumor promoter. Toxicol. Lett. 81, 107–113 (1995). https://doi.org/10.1016/0378-4274(95)03413-7

    Article  Google Scholar 

  9. Dil, E.A., Ghaedi, M., Asfaram, A., et al.: Preparation of nanomaterials for the ultrasound-enhanced removal of Pb2+ ions and malachite green dye: chemometric optimization and modeling. Ultrason. Sonochem. 34, 677–691 (2017). https://doi.org/10.1016/j.ultsonch.2016.07.001

    Article  Google Scholar 

  10. Tan, K.B., Vakili, M., Hord, B.A., et al.: Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms. Sep. Purif. Technol. 150, 229–242 (2015). https://doi.org/10.1016/j.seppur.2015.07.009

    Article  Google Scholar 

  11. Zheng, H., Qi, J., Jiang, R., et al.: Adsorption of malachite green by magnetic litchi pericarps: a response surface methodology investigation. J. Environ. Manage. 162, 232–239 (2015). https://doi.org/10.1016/j.jenvman.2015.07.057

    Article  Google Scholar 

  12. Islam, A., Teo, S.H., Taufiq-Yap, Y.H., et al.: Step towards the sustainable toxic dyes removal and recycling from aqueous solution—a comprehensive review. Resour. Conserv. Recycl. (2021). https://doi.org/10.1016/j.resconrec.2021.105849

    Article  Google Scholar 

  13. Bin Yeamin, M., Islam, M.M., Chowdhury, A.-N., et al.: Efficient encapsulation of toxic dyes from wastewater using several biodegradable natural polymers and their composites. J. Clean. Prod. (2021). https://doi.org/10.1016/j.jclepro.2021.125920

    Article  Google Scholar 

  14. Awual, M.R.: A novel facial composite adsorbent for enhanced copper(II) detection and removal from wastewater. Chem. Eng. J. 266, 368–375 (2015). https://doi.org/10.1016/j.cej.2014.12.094

    Article  Google Scholar 

  15. Awual, M.R.: Novel ligand functionalized composite material for efficient copper(II) capturing from wastewater sample. Compos. Part B 172, 387–396 (2019). https://doi.org/10.1016/j.compositesb.2019.05.103

    Article  Google Scholar 

  16. Awual, M.R.: Mesoporous composite material for efficient lead(II) detection and removal from aqueous media. J. Environ. Chem. Eng. (2019). https://doi.org/10.1016/j.jece.2019.103124

    Article  Google Scholar 

  17. Hasan, M., Shenashen, M.A., Hasan, M.N., et al.: Natural biodegradable polymeric bioadsorbents for efficient cationic dye encapsulation from wastewater. J. Mol. Liq. (2021). https://doi.org/10.1016/j.molliq.2020.114587

    Article  Google Scholar 

  18. Hasana, M.M., Hasan, M.N., Awual, M.R., et al.: Biodegradable natural carbohydrate polymeric sustainable adsorbents for efficient toxic dye removal from wastewater. J. Mol. Liq. (2020). https://doi.org/10.1016/j.molliq.2020.114356

    Article  Google Scholar 

  19. Kubra, K.T., Salman, M.S., Hasan, M.N., et al.: Utilizing an alternative composite material for effective copper(II) ion capturing from wastewater. J. Mol. Liq. (2021). https://doi.org/10.1016/j.molliq.2021.116325

    Article  Google Scholar 

  20. Sheikh, T.A., Rahman, M.M., Asiri, A.M., et al.: 4-Hexylresorcinol sensor development based on wet-chemically prepared Co3O4@Er2O3 nanorods: a practical approach. J. Ind. Eng. Chem. 66, 446–455 (2018). https://doi.org/10.1016/j.jiec.2018.06.012

    Article  Google Scholar 

  21. Znad, H., Abbas, K., Hena, S., et al.: Synthesis a novel multilamellar mesoporous TiO2/ZSM-5 for photo-catalytic degradation of methyl orange dye in aqueous media. J. Environ. Chem. Eng. 6, 218–227 (2018). https://doi.org/10.1016/j.jece.2017.11.077

    Article  Google Scholar 

  22. Wu, S., Huang, S., Wu, Y., et al.: Characteristics and catalytic actions of inorganic constituents from entrained-flow coal gasification slag. J. Energy Inst. 88, 93–103 (2015). https://doi.org/10.1016/j.joei.2014.04.001

    Article  Google Scholar 

  23. Huo, S.-H., Yan, X.-P.: Metal-organic framework MIL-100(Fe) for the adsorption of malachite green from aqueous solution. J. Mater. Chem. 22, 7449–7455 (2012). https://doi.org/10.1039/c2jm16513a

    Article  Google Scholar 

  24. Guo, F., Jiang, X., Li, X., et al.: Synthesis of MgO/Fe3O4 nanoparticles embedded activated carbon from biomass for high-efficient adsorption of malachite green. Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2019.122240

    Article  Google Scholar 

  25. Kulaksiz, E., Gozmen, B., Kayan, B., et al.: Adsorption of malachite green on Fe-modified biochar: influencing factors and process optimization. Desalin. Water Treat. 74, 383–394 (2017). https://doi.org/10.5004/dwt.2017.20601

    Article  Google Scholar 

  26. Zhang, Y., Wang, R., Qiu, G., et al.: Synthesis of porous material from coal gasification fine slag residual carbon and its application in removal of methylene blue. Molecules (2021). https://doi.org/10.3390/molecules26206116

    Article  Google Scholar 

  27. Tang, R., Hong, W., Srinivasakannan, C., et al.: A novel mesoporous Fe-silica aerogel composite with phenomenal adsorption capacity for malachite green. Sep. Purif. Technol. (2022). https://doi.org/10.1016/j.seppur.2021.119950

    Article  Google Scholar 

  28. Chowdhury, M.F., Khandaker, S., Sarker, F., et al.: Current treatment technologies and mechanisms for removal of indigo carmine dyes from wastewater: a review. J. Mol. Liq. (2020). https://doi.org/10.1016/j.molliq.2020.114061

    Article  Google Scholar 

  29. Zhao, X., Zeng, C., Mao, Y., et al.: The surface characteristics and reactivity of residual carbon in coal gasification slag. Energy Fuels 24, 91–94 (2010). https://doi.org/10.1021/ef9005065

    Article  Google Scholar 

  30. Kim, K.J., Jang, J.S., Lee, J.-H., et al.: Determination of the absolute thickness of ultrathin Al2O3 overlayers on Si (100) substrate. Anal. Chem. 81, 8519–8522 (2009). https://doi.org/10.1021/ac901463m

    Article  Google Scholar 

  31. Qian, B., Wang, Y., Zhao, Q., et al.: Preparation and luminescence properties of Eu3+incorporated in CaCO3 nanocrystals with multiple sites. J. Lumin. (2021). https://doi.org/10.1016/j.jlumin.2021.118344

    Article  Google Scholar 

  32. Yamashita, T., Hayes, P.: Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254, 2441–2449 (2008). https://doi.org/10.1016/j.apsusc.2007.09.063

    Article  Google Scholar 

  33. Islam, A., Teo, S.H., Awual, M.R., et al.: Assessment of clean H-2 energy production from water using novel silicon photocatalyst. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2019.118805

    Article  Google Scholar 

  34. Islam, M.A., Angove, M.J., Morton, D.W., et al.: A mechanistic approach of chromium (VI) adsorption onto manganese oxides and boehmite. J. Environ. Chem. Eng. (2020). https://doi.org/10.1016/j.jece.2019.103515

    Article  Google Scholar 

  35. Kabir, M.M., Akter, M.M., Khandaker, S., et al.: Highly effective agro-waste based functional green adsorbents for toxic chromium(VI) ion removal from wastewater. J. Mol. Liq. (2022). https://doi.org/10.1016/j.molliq.2021.118327

    Article  Google Scholar 

  36. Rahman, M.M., Sheikh, T.A., Asiri, A.M., et al.: Development of 3-methoxyaniline sensor probe based on thin Ag2O@La2O3 nanosheets for environmental safety. New J. Chem. 43, 4620–4632 (2019). https://doi.org/10.1039/c9nj00415g

    Article  Google Scholar 

  37. Zhang, X., Gao, J., Zhao, S., et al.: Hexavalent chromium removal from aqueous solution by adsorption on modified zeolites coated with Mg-layered double hydroxides. Environ. Sci. Pollut. Res. 26, 32928–32941 (2019). https://doi.org/10.1007/s11356-019-06410-5

    Article  Google Scholar 

  38. Lu, S., Liu, Q., Han, R., et al.: Core-shell structured Y zeolite/hydrophobic organic polymer with improved toluene adsorption capacity under dry and wet conditions. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.128194

    Article  Google Scholar 

  39. Teo, S.H., Ng, C.H., Islam, A., et al.: Sustainable toxic dyes removal with advanced materials for clean water production: a comprehensive review. J. Clean. Prod. (2022). https://doi.org/10.1016/j.jclepro.2021.130039

    Article  Google Scholar 

  40. Altintig, E., Onaran, M., Sari, A., et al.: Preparation, characterization and evaluation of bio-based magnetic activated carbon for effective adsorption of malachite green from aqueous solution. Mater. Chem. Phys. 220, 313–321 (2018). https://doi.org/10.1016/j.matchemphys.2018.05.077

    Article  Google Scholar 

  41. Li, X., Zhang, Y., Jing, L., et al.: Novel N-doped CNTs stabilized Cu2O nanoparticles as adsorbent for enhancing removal of malachite green and tetrabromobisphenol A. Chem. Eng. J. 292, 326–339 (2016). https://doi.org/10.1016/j.cej.2016.02.043

    Article  Google Scholar 

  42. Wang, D., Liu, L., Jiang, X., et al.: Adsorption and removal of malachite green from aqueous solution using magnetic beta-cyclodextrin-graphene oxide nanocomposites as adsorbents. Colloids and Surf. A 466, 166–173 (2015). https://doi.org/10.1016/j.colsurfa.2014.11.021

    Article  Google Scholar 

  43. Kan, Y., Yue, Q., Kong, J., et al.: The application of activated carbon produced from waste printed circuit boards (PCBs) by H3PO4 and steam activation for the removal of malachite green. Chem. Eng. J. 260, 541–549 (2015). https://doi.org/10.1016/j.cej.2014.09.047

    Article  Google Scholar 

  44. Mittal, H., Parashar, V., Mishra, S.B., et al.: Fe3O4 MNPs and gum xanthan based hydrogels nanocomposites for the efficient capture of malachite green from aqueous solution. Chem. Eng. J. 255, 471–482 (2014). https://doi.org/10.1016/j.cej.2014.04.098

    Article  Google Scholar 

  45. Znad, H., Awual, M.R., Martini, S.: The utilization of algae and seaweed biomass for bioremediation of heavy metal-contaminated wastewater. Molecules (2022). https://doi.org/10.3390/molecules27041275

    Article  Google Scholar 

  46. Liu, S., Xu, W.-H., Liu, Y.-G., et al.: Facile synthesis of Cu(II) impregnated biochar with enhanced adsorption activity for the removal of doxycycline hydrochloride from water. Sci. Total Environ. 592, 546–553 (2017). https://doi.org/10.1016/j.scitotenv.2017.03.087

    Article  Google Scholar 

  47. Mohamed, R.M., Shawky, A., Mkhalid, I.A.: Facile synthesis of MgO and Ni-MgO nanostructures with enhanced adsorption of methyl blue dye. J. Phys. Chem. Solids 101, 50–57 (2017). https://doi.org/10.1016/j.jpcs.2016.10.009

    Article  Google Scholar 

  48. Lan, Y., Wang, H., Li, X., et al.: The absorption of kitchen waste mixed-base biochar on malachite green. Chem. Lett. 49, 20–23 (2020). https://doi.org/10.1246/cl.190711

    Article  Google Scholar 

  49. Bastami, T.R., Entezari, M.H.: Activated carbon from carrot dross combined with magnetite nanoparticles for the efficient removal of p-nitrophenol from aqueous solution. Chem. Eng. J. 210, 510–519 (2012). https://doi.org/10.1016/j.cej.2012.08.011

    Article  Google Scholar 

  50. Guo, F., Li, X., Jiang, X., et al.: Characteristics and toxic dye adsorption of magnetic activated carbon prepared from biomass waste by modified one-step synthesis. Colloids Surf. A 555, 43–54 (2018). https://doi.org/10.1016/j.colsurfa.2018.06.061

    Article  Google Scholar 

Download references

Funding

This work is supported by the project of the key research plan of Ningxia (2021BEE03011) and Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (Grant No. 2022-K23).

Author information

Authors and Affiliations

Authors

Contributions

YD: Formal analysis, Data curation, Software, Investigation, Writing—original draft. FG: Methodology, Conceptualization, Resources, Writing—review & editing, Supervision. RS: Data curation, Software, Writing—review & editing. KD: Resources, Writing—review & editing. QQ: Writing—review & editing. SL: Writing—review & editing. LX: Writing—review & editing. YB: Writing—review & editing.

Corresponding authors

Correspondence to Feiqiang Guo or Yonghui Bai.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Guo, F., Shu, R. et al. Evaluation of the High Metals-Containing Coal Gasification Fine Slag as a High-Performance Adsorbent for Malachite Green Adsorption. Waste Biomass Valor 13, 4897–4909 (2022). https://doi.org/10.1007/s12649-022-01831-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01831-9

Keywords

Navigation