Skip to main content
Log in

A Biorefinery Approach for an Integral Valorisation of Avocado Peel and Seeds Through Supercritical Fluids

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Food residues have a high potential for extracting components of interest to humans, such as phenolic acids and flavonoids. For example, two residues are generated while processing fruits such as avocado: seed and peel. Both residues include components of interest, such as quercetin and catechin. These compounds have different applications, especially in the pharmaceutical industry. Supercritical Fluid Extraction (SFE) has shown to be a promising technology for extracting these and other compounds at different scales. However, these extractions usually involve a high amount of residues to be also valorized. This work analyzes the integral valorization of avocado residues through a biorefinery approach and its comparison with stand-alone processes such as SFE. In addition, the biorefinery considered other value-added products. Integral biorefineries of avocado seed and peel allow profit margins of 47.41% and 43.05%, respectively. In contrast, stand-alone processes evidenced profit margins of 21.40% and 21.14%, respectively. These profit margin differences are due to the integral valorization of avocado residues. Under this integral valorization scheme, the production costs of a crude extract of avocado seed and peel correspond to 5.26 USD/kg and 3.99 USD/kg, respectively. This value is low compared with a production cost of 7.86 USD/kg and 5.52 USD/kg for stand-alone processes for the seed and peel of avocado, respectively. These results show how the integral valorization of wastes (in this case, avocado wastes) leads to a decrease in production costs and an increase in the profit margins of the process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed durint the current study is avaible from the corresponding author on reasonable request.

References

  1. Imbert, E.: Food waste valorization options: opportunities from the bioeconomy. Open Agric. 2, 195–204 (2017). https://doi.org/10.1515/OPAG-2017-0020

    Article  Google Scholar 

  2. del Sánchez-Camargo, A.P., Gutiérrez, L.F., Vargas, S.M., Martinez-Correa, H.A., Parada-Alfonso, F., Narváez-Cuenca, C.E.: Valorisation of mango peel: proximate composition, supercritical fluid extraction of carotenoids, and application as an antioxidant additive for an edible oil. J. Supercrit. Fluids 152, 104574 (2019). https://doi.org/10.1016/j.supflu.2019.104574

    Article  Google Scholar 

  3. Chai, Y.H., Yusup, S., Kadir, W.N.A., Wong, C.Y., Rosli, S.S., Ruslan, M.S.H., Chin, B.L.F., Yiin, C.L.: Valorization of tropical biomass waste by supercritical fluid extraction technology. Sustainability (Switzerland) 13, 1–24 (2021). https://doi.org/10.3390/su13010233

    Article  Google Scholar 

  4. Rajesh Banu, J., Kavitha, S., Yukesh Kannah, R., Dinesh Kumar, M., Atabani, A.E., Kumar, G.: Biorefinery of spent coffee grounds waste: Viable pathway towards circular bioeconomy. Bioresour. Technol. (2020). https://doi.org/10.1016/j.biortech.2020.122821

    Article  Google Scholar 

  5. Solarte-Toro, J.C., Cardona-Alzate, C.A.: Biorefineries as the base for accomplishing the sustainable development goals (SDGs) and the transition to bioeconomy: technical aspects, challenges and perspectives. Biores. Technol. 340, 125626 (2021). https://doi.org/10.1016/j.biortech.2021.125626

    Article  Google Scholar 

  6. Moncada, J., Aristizábal, V.: Design strategies for sustainable biorefineries. Biochem. Eng. J. 116, 122–134 (2016). https://doi.org/10.1016/j.bej.2016.06.009

    Article  Google Scholar 

  7. Comisión Europea, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: Youth Opportunities Initiative (2011)

  8. Cerón, I.X.X., Higuita, J.C.C., Cardona, C.A.A.: Design and analysis of antioxidant compounds from Andes Berry fruits (Rubus glaucus benth) using an enhanced-fluidity liquid extraction process with CO2 and ethanol. J. Supercrit. Fluids 62, 96–101 (2012). https://doi.org/10.1016/j.supflu.2011.12.007

    Article  Google Scholar 

  9. Moncada, J., Hernández, V., Chacón, Y., Betancourt, R., Cardona, C.A.: Citrus based biorefineries. In: Simmons, D. (ed.) Citrus Fruits, pp. 1–26. Nova Publishers, Production, Consumption and Health Benefits (2015)

    Google Scholar 

  10. Ortiz-Sanchez, M., Solarte-Toro, J.C., González-Aguirre, J.A., Peltonen, K.E., Richard, P., Cardona Alzate, C.A.: Pre-feasibility analysis of the production of mucic acid from orange peel waste under the biorefinery concept. Biochem. Eng. J. 161, 107680 (2020). https://doi.org/10.1016/j.bej.2020.107680

    Article  Google Scholar 

  11. Ortiz-Sanchez, M., Solarte-Toro, J.C., Orrego-Alzate, C.E., Acosta-Medina, C.D., Cardona-Alzate, C.A.: Integral use of orange peel waste through the biorefinery concept: an experimental, technical, energy, and economic assessment. Biomass Convers. Biorefinery (2020). https://doi.org/10.1007/s13399-020-00627-y

    Article  Google Scholar 

  12. Trigo, J.P., Alexandre, E.M.C., Saraiva, J.A., Pintado, M.E.: High value-added compounds from fruit and vegetable by-products—characterization, bioactivities, and application in the development of novel food products. Crit. Rev. Food Sci. Nutr. 60, 1388–1416 (2019). https://doi.org/10.1080/10408398.2019.1572588

    Article  Google Scholar 

  13. Domínguez, M.P., Araus, K., Bonert, P., Sánchez, F., Miguel, G.S., Toledo, M.: The avocado and its waste: an approach of fuel potential/application. Environ. Energy Climate Change II (2014). https://doi.org/10.1007/698_2014_291

    Article  Google Scholar 

  14. Amado, D.A.V., Detoni, A.M., de Carvalho, S.L.C., Torquato, A.S., Martin, C.A., Tiuman, T.S., Aguiar, C.M., Cottica, S.M.: Tocopherol and fatty acids content and proximal composition of four avocado cultivars (Persea americana mill.). Acta Aliment. 48, 47–55 (2019). https://doi.org/10.1556/066.2019.48.1.6

    Article  Google Scholar 

  15. Dávila, J.A., Rosenberg, M., Castro, E., Cardona, C.A.: A model biorefinery for avocado (Persea americana mill.) processing. Biores. Technol. 243, 17–29 (2017). https://doi.org/10.1016/j.biortech.2017.06.063

    Article  Google Scholar 

  16. Dabas, D., Shegog, R., Ziegler, G., Lambert, J.: Avocado (Persea americana) seed as a source of bioactive phytochemicals. Curr. Pharm. Des. 19, 6133–6140 (2013). https://doi.org/10.2174/1381612811319340007

    Article  Google Scholar 

  17. Figueroa, J.G., Borrás-Linares, I., Lozano-Sánchez, J., Segura-Carretero, A.: Comprehensive characterization of phenolic and other polar compounds in the seed and seed coat of avocado by HPLC-DAD-ESI-QTOF-MS. Food Res. Int. 105, 752–763 (2018). https://doi.org/10.1016/j.foodres.2017.11.082

    Article  Google Scholar 

  18. Tremocoldi, M.A., Rosalen, P.L., Franchin, M., Massarioli, A.P., Denny, C., Daiuto, É.R., Paschoal, J.A.R., Melo, P.S., De Alencar, S.M.: Exploration of avocado by-products as natural sources of bioactive compounds. PLoS ONE (2018). https://doi.org/10.1371/journal.pone.0192577

    Article  Google Scholar 

  19. Tyśkiewicz, K., Konkol, M., Rój, E.: The application of supercritical fluid extraction in phenolic compounds isolation from natural plant materials. Molecules 23, 2625 (2018). https://doi.org/10.3390/MOLECULES23102625

    Article  Google Scholar 

  20. Wang, W., Bostic, T.R., Gu, L.: Antioxidant capacities, procyanidins and pigments in avocados of different strains and cultivars. Food Chem. 122, 1193–1198 (2010). https://doi.org/10.1016/j.foodchem.2010.03.114

    Article  Google Scholar 

  21. Kosińska, A., Karamać, M., Estrella, I., Hernández, T., Bartolomé, B., Dykes, G.A.: Phenolic compound profiles and antioxidant capacity of Persea americana mill. peels and seeds of two varieties. J. Agric. Food Chem. 60, 4613–4619 (2012). https://doi.org/10.1021/jf300090p

    Article  Google Scholar 

  22. López-Cobo, A., Gómez-Caravaca, A.M., Pasini, F., Caboni, M.F., Segura-Carretero, A., Fernández-Gutiérrez, A.: HPLC-DAD-ESI-QTOF-MS and HPLC-FLD-MS as valuable tools for the determination of phenolic and other polar compounds in the edible part and by-products of avocado. LWT Food Sci. Technol. 73, 505–513 (2016). https://doi.org/10.1016/j.lwt.2016.06.049

    Article  Google Scholar 

  23. Jimenez, P., Garcia, P., Quitral, V., Vasquez, K., Parra-Ruiz, C., Reyes-Farias, M., Garcia-Diaz, D.F., Robert, P., Encina, C., Soto-Covasich, J.: Pulp, leaf, peel and seed of avocado fruit: a review of bioactive compounds and healthy benefits. Food Rev. Intl. 00, 1–37 (2020). https://doi.org/10.1080/87559129.2020.1717520

    Article  Google Scholar 

  24. Nathiya, S., Durga, M., Devasena, T.: Quercetin, encapsulated quercetin and its application—a review. Int. J. Pharm. Pharm. Sci. 6, 20–26 (2014)

    Google Scholar 

  25. Li, D., Martini, N., Wu, Z., Wen, J.: Development of an isocratic HPLC method for catechin quantification and its application to formulation studies. Fitoterapia 83, 1267–1274 (2012). https://doi.org/10.1016/j.fitote.2012.06.006

    Article  Google Scholar 

  26. Caballero-Galván, A.S., Restrepo-Serna, D.L., Ortiz-Sánchez, M., Cardona-alzate, C.A.: Analysis of extraction kinetics of bioactive compounds from spent coffee grounds (Coffea arábica). Waste Biomass Valoriz. (2018). https://doi.org/10.1007/s12649-018-0332-8

    Article  Google Scholar 

  27. Lack, E., Seidlitz, H.: Commercial scale decaffeination of coffee and tea using supercritical CO2. Extr. Nat. Prod. Using Near-Crit. Solv. (1993). https://doi.org/10.1007/978-94-011-2138-5_5

    Article  Google Scholar 

  28. Lee, S., Park, M.K., Kim, K.H., Kim, Y.-S.: Effect of Supercritical carbon dioxide decaffeination on volatile components of green teas. J. Food Sci. 72, S497–S502 (2007). https://doi.org/10.1111/J.1750-3841.2007.00446.X

    Article  Google Scholar 

  29. Han, J.S., Rowell, J.S.: Chemical Composition of Fibers. In: Rowell, R.M., Young, R.A., Rowell, J.K. (eds.) Paper and Composites from agro-based resources, pp. 83–134. CRC Press, Baca Raton (1997)

    Google Scholar 

  30. Sluiter, A., Hames, B., Ruiz, R.O., Scarlata, C., Sluiter, J., Templeton, D.: Determination of Ash in Biomass. Lab. Anal. Proced. (LAP), pp. 1–8 Technical Report NREL/TP-510-42622 (2005)

  31. Sluiter, A., Ruiz, R.O., Scarlata, C., Sluiter, J., Templeton, D.: Determination of extractives in biomass. Biomass Anal. Technol. Team Lab. Anal. Proced, pp. 1–12 Technical Report NREL/TP-510-42619 (2004)

  32. Asbóth, A.V.: A new process for the quantitative estimation of starch. Analyst 12, 138–142 (1887). https://doi.org/10.1039/AN8871200138

    Article  Google Scholar 

  33. Jonathan Moncada, B., Valentina Aristizábal, M., Carlos, A., Cardona, A.: Design strategies for sustainable biorefineries. Biochem. Eng. J. 116, 122–134 (2016). https://doi.org/10.1016/j.bej.2016.06.009

    Article  Google Scholar 

  34. Ait Sair, A., Kansou, K., Michaud, F., Cathala, B.: Multicriteria definition of small-scale biorefineries based on a statistical classification. Sustainability (Switzerland) (2021). https://doi.org/10.3390/su13137310

    Article  Google Scholar 

  35. Peng, D.-Y., Robinson, D.B.: A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15, 59–64 (1976). https://doi.org/10.1021/i160057a011

    Article  Google Scholar 

  36. Páramos, P.R.S., Granjo, J.F.O., Corazza, M.L., Matos, H.A.: Extraction of high value products from avocado waste biomass. J. Supercrit. Fluids (2020). https://doi.org/10.1016/j.supflu.2020.104988

    Article  Google Scholar 

  37. Aristizábal, J., Sánchez, T.: Guía técnica para producción y análisis de almidón de yuca. Food Agric. Organ. United Nations (FAO) 163, 36–39 (2007)

    Google Scholar 

  38. Ahmad, F., Jameel, A.T., Kamarudin, M.H., Mel, M.: Study of growth kinetic and modeling of ethanol production by Saccharomyces cerevisae. Afr. J. Biotech. 10, 18842–18846 (2011). https://doi.org/10.5897/AJB11.2763

    Article  Google Scholar 

  39. Quintero, J., Al, Et.: Evaluación de la deshidratación de alcohol carburante mediante simulación de procesos. Facultad de Ciencias Agropecuarias 5, 73–83 (2007)

    Google Scholar 

  40. Jung, Y.H., Kim, K.H.: Pretreatment of biomass. In: Pandey, A., Negi, S., Binod, P., Larroche, C. (eds.) Acidic Pretreatment. Elsevier, Amsterdam (2014)

    Google Scholar 

  41. Sun, S.S., Sun, S.S., Cao, X., Sun, R.: The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Biores. Technol. 199, 49–58 (2016). https://doi.org/10.1016/j.biortech.2015.08.061

    Article  Google Scholar 

  42. Aguilar, R., Ramírez, J.A., Garrote, G., Vázquez, M.: Kinetic study of the acid hydrolysis of sugar cane bagasse. J. Food Eng. 55, 309–318 (2002). https://doi.org/10.1016/S0260-8774(02)00106-1

    Article  Google Scholar 

  43. Purwadi, R., Niklasson, C., Taherzadeh, M.J.: Kinetic study of detoxification of dilute-acid hydrolyzates by Ca(OH)2. J. Biotechnol. 114, 187–198 (2004). https://doi.org/10.1016/j.jbiotec.2004.07.006

    Article  Google Scholar 

  44. Khodaverdi, M., Karimi, K., Jeihanipour, A., Taherzadeh, M.J.: Kinetic modeling of rapid enzymatic hydrolysis of crystalline cellulose after pretreatment by NMMO. J. Ind. Microbiol. Biotechnol. 39, 429–438 (2012). https://doi.org/10.1007/s10295-011-1048-y

    Article  Google Scholar 

  45. Leksawasdi, N., Joachimsthal, E.L., Rogers, P.L.: Mathematical modelling of ethanol production from glucose/xylose mixtures by recombinant Zymomonas mobilis. Biotech. Lett. 23, 1087–1093 (2001)

    Article  Google Scholar 

  46. Puig-Gamero, M., Argudo-Santamaria, J., Valverde, J.L., Sánchez, P., Sanchez-Silva, L.: Three integrated process simulation using aspen plus®: Pine gasification, syngas cleaning and methanol synthesis. Energy Convers. Manage. 177, 416–427 (2018). https://doi.org/10.1016/j.enconman.2018.09.088

    Article  Google Scholar 

  47. Solarte-Toro, J.C., Chacón-Pérez, Y., Cardona-Alzate, C.A.: Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material. Electron. J. Biotechnol. 33, 52–62 (2018). https://doi.org/10.1016/J.EJBT.2018.03.005

    Article  Google Scholar 

  48. Manufacturers, Suppliers & Products in China [WWW Document] (2022), https://www.made-in-china.com/. Accessed 25.Apr 2022

  49. Solarte-Toro, J.C., Ortiz-Sanchez, M., Restrepo-Serna, D.L., Peroza Piñeres, P., Pérez Cordero, A., Cardona Alzate, C.A.: Influence of products portfolio and process contextualization on the economic performance of small- and large-scale avocado biorefineries. Biores. Technol. (2021). https://doi.org/10.1016/j.biortech.2021.126060

    Article  Google Scholar 

  50. García-Vargas, M.C., Contreras, M.D.M., Castro, E.: Avocado-derived biomass as a source of bioenergy and bioproducts. Appl. Sci. (Switzerland) (2020). https://doi.org/10.3390/app10228195

    Article  Google Scholar 

  51. de Oliveira, R.C., Rossi, R.M., Gimenes, M.L., Jagadevan, S., Machado Giufrida, W., Davantel De Barros, S.T.: Extraction of passion fruit seed oil using supercritical CO2: a study of mass transfer and rheological property by Bayesian inference. Grasas Aceites 64, 400–406 (2013)

    Article  Google Scholar 

  52. Castro-Vargas, H.I., Baumann, W., Ferreira, S.R.S., Parada-Alfonso, F.: Valorization of papaya (Carica papaya L.) agroindustrial waste through the recovery of phenolic antioxidants by supercritical fluid extraction. J. Food Sci. Technol. 56(6), 3055–3066 (2019). https://doi.org/10.1007/S13197-019-03795-6

    Article  Google Scholar 

  53. Ouerghemmi, S., Sebei, H., Siracusa, L., Ruberto, G., Saija, A., Cimino, F., Cristani, M.: Comparative study of phenolic composition and antioxidant activity of leaf extracts from three wild Rosa species grown in different Tunisia regions: Rosa canina L., Rosa moschata Herrm. and Rosa sempervirens L. Ind. Crops Prod. 94, 167–177 (2016). https://doi.org/10.1016/J.INDCROP.2016.08.019

    Article  Google Scholar 

  54. Botha, T., von Blottnitz, H.: A comparison of the environmental benefits of bagasse-derived electricity and fuel ethanol on a life-cycle basis. Energy Policy 34, 2654–2661 (2006). https://doi.org/10.1016/j.enpol.2004.12.017

    Article  Google Scholar 

  55. Cardona Alzate, C.A., Posada Duque, J.A., Quintero Suarez, J.A.: Bagazo de caña: uso actual y potenciales aplicaciones. In: Aprovechamiento de Subproductos y Residuos Agroindustriales: Glicerina y Lignocelulósicos, pp. 137–169. Universidad Nacional de Colombia: Sede Manizales, Manizales, Colombia (2010)

    Google Scholar 

  56. Enguídanos, M., Soria, A., Kavalov, B., Jensen, P.: Techno-economic analysis of Bio-alcohol production in the EU: a short summary for decision makers. Eur. Comm. 9, 27 (2002)

    Google Scholar 

  57. Cardona, C.A., Sánchez, Ó.J., Gutiérrez, L.F.: Process synthesis for fuel ethanol production, focus on catalyst. Taylor & Francis Group, New York (2010)

    Google Scholar 

  58. Balat, M., Balat, H., Öz, C.: Progress in bioethanol processing. Prog. Energy Combust. Sci. 34, 551–573 (2008). https://doi.org/10.1016/j.pecs.2007.11.001

    Article  Google Scholar 

  59. Suarez-Bertoa, R., Zardini, A.A., Keuken, H., Astorga, C.: Impact of ethanol containing gasoline blends on emissions from a flex-fuel vehicle tested over the Worldwide Harmonized Light duty Test Cycle (WLTC). Fuel 143, 173–182 (2015). https://doi.org/10.1016/j.fuel.2014.10.076

    Article  Google Scholar 

  60. Restrepo-Serna, D.L., Cardona Alzate, C.A.: Economic pre-feasibility of supercritical fluid extraction of antioxidants from fruit residues. Sustain. Chem. Pharm. (2022). https://doi.org/10.1016/j.scp.2022.100600

    Article  Google Scholar 

  61. MinAgricultura, Anuario estadístico de recursos agrícolas [WWW Document] (2022), http://www.agronet.gov.co. Accessed 10 Mar 2022

  62. Asocaña, Precio máximo del etanol en Colombia [WWW Document] (2021), https://www.asocana.org/modules/documentos/vistadocumento.aspx?id=11893. Accessed 1 December 2021.

  63. Alibaba.com [WWW Document] (2021), https://spanish.alibaba.com/. Accessed 14 Oct 2021.

  64. Botero, C.D., Restrepo, D.L., Cardona, C.A.: A comprehensive review on the implementation of the biorefinery concept in biodiesel production plants. Biofuel Res. J. 4, 691–703 (2017). https://doi.org/10.18331/BRJ2017.4.3.6

    Article  Google Scholar 

  65. Colombia precios de la electricidad [WWW Document], (2021). https://es.globalpetrolprices.com/Colombia/electricity_prices/ Accessed 1 Dec 2021

Download references

Funding

The authors acknowledge the support of the Becas Doctorales del Bicentenario del Proyecto: CORTE I “Formación de capital humano de alto nivel Universidad Nacional de Colombia”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Ariel Cardona-Alzate.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Restrepo-Serna, D.L., Solarte-Toro, J.C. & Cardona-Alzate, C.A. A Biorefinery Approach for an Integral Valorisation of Avocado Peel and Seeds Through Supercritical Fluids. Waste Biomass Valor 13, 3973–3988 (2022). https://doi.org/10.1007/s12649-022-01829-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01829-3

Keywords

Navigation