Skip to main content
Log in

Ultrafiltration of Fucus vesiculosus Extracts Under Different Operating Conditions

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The interest in separating and concentrating bioactives and minerals from seaweeds extracts is growing due to large health benefits of these substances. The aim of this study was to investigate the separation of components of Fucus vesiculosus seaweed extracts by tangential ultrafiltration and apply Hermia’s models adapted to crossflow ultrafiltration to understand the fouling mechanism. The influence of membrane cut-off varying from 5 to 150 kDa, crossflow velocity from 0.081 to 0.095 m/s and transmembrane pressure between 2 and 8 bar was studied. The present study revealed that the ultrafiltration membranes process was successful in clarifying and still delivering permeates with a high content in iodine. Clarification was almost completely achieved with 5 kDa polyethersulfone membrane, while the hydrophilic polyethersulfone membrane was not adequate to due to the high retention in iodine. Cake layer formation mathematical model was successfully used to predict the permeate flux over time. There was evidence that cake layer is the fouling mechanism in the filtration of Fucus vesiculosus extracts, whatever the membrane crossflow velocity or transmembrane pressure, probably due to the high content of these extracts in alginates.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data will be available upon request.

References

  1. Olavur Gregersen, Liina Joller-Vahter, John van Leeuwen, Snejana MoncheOlavur Gregersen, Liina Joller-Vahter, John van Leeuwen, Snejana Moncheva, Jens Kjerulf Petersen, Wilco Schoonderbeek, Vitor Verdelho Vieira, Helena Vieira, Maye Walravenva, Jens Kjeru, M.W.: Blue Bioeconomy Forum: roadmap for the blue bioeconomy. European Comission, Technopolis Group and Wageningen Research (2019)

  2. FAO: The State of World Fisheries and Aquaculture 2020. Sustainability in action. (2020)

  3. Catarino, M.D., Silva, A.M.S., Cardoso, S.M.: Phycochemical constituents and biological activities of fucus spp. Mar. Drugs. (2018). https://doi.org/10.3390/md16080249

    Article  Google Scholar 

  4. GBIF: GBIF Backbone Taxonomy-Fucus vesiculosus L., https://www.gbif.org/species/8222574. Retrieved 7 Jan 2022

  5. Küpper, F.C., Feiters, M.C., Olofsson, B., Kaiho, T., Yanagida, S., Zimmermann, M.B., Carpenter, L.J., Luther, G.W., III., Lu, Z., Jonsson, M., Kloo, L.: Commemorating two centuries of iodine research: an interdisciplinary overview of current research. Angew. Chemie Int. Ed. 50, 11598–11620 (2011). https://doi.org/10.1002/anie.201100028

    Article  Google Scholar 

  6. de Neves, F., Demarco, M., Tribuzi, G.: Drying and quality of microalgal powders for human alimentation. In: Vítová, M. (ed.) Microalgae: From Physiology to Application. Intechopen, London (2020)

    Google Scholar 

  7. Castro-Muñoz, R., González-Melgoza, L.L., García-Depraect, O.: Ongoing progress on novel nanocomposite membranes for the separation of heavy metals from contaminated water. Chemosphere. (2021). https://doi.org/10.1016/j.chemosphere.2020.129421

    Article  Google Scholar 

  8. Castro-Muñoz, R., Díaz-Montes, E., Cassano, A., Gontarek, E.: Membrane separation processes for the extraction and purification of steviol glycosides: an overview. Crit. Rev. Food Sci. Nutr. 61, 2152–2174 (2021). https://doi.org/10.1080/10408398.2020.1772717

    Article  Google Scholar 

  9. Mulder, J.: Basic Principles of Membrane Technology. Springer, Netherlands (1996)

    Book  Google Scholar 

  10. Carbonell-Alcaina, C., Álvarez-Blanco, S., Bes-Piá, M.A., Mendoza-Roca, J.A., Pastor-Alcañiz, L.: Ultrafiltration of residual fermentation brines from the production of table olives at different operating conditions. J. Clean. Prod. 189, 662–672 (2018). https://doi.org/10.1016/j.jclepro.2018.04.127

    Article  Google Scholar 

  11. Balyan, U., Sarkar, B.: Integrated membrane process for purification and concentration of aqueous Syzygium cumini (L.) seed extract. Food Bioprod. Process. 98, 29–43 (2016). https://doi.org/10.1016/j.fbp.2015.12.005

    Article  Google Scholar 

  12. Muñoz, P., Pérez, K., Cassano, A., Ruby-Figueroa, R.: Recovery of anthocyanins and monosaccharides from grape marc extract by nanofiltration membranes. Molecules. (2021). https://doi.org/10.3390/molecules26072003

    Article  Google Scholar 

  13. Abd-Razak, N.H., Chew, Y.M.J., Bird, M.R.: Membrane fouling during the fractionation of phytosterols isolated from orange juice. Food Bioprod. Process. 113, 10–21 (2019). https://doi.org/10.1016/j.fbp.2018.09.005

    Article  Google Scholar 

  14. Lipnizki, F., Dupuy, A.: Food industry applications. In: Hoek, E.M.V., Tarabara, V.V. (eds.) Encyclopedia of Membrane Science and Technology. Wiley, Hoboken (2013)

    Google Scholar 

  15. Hermia, J.: Constant pressure blocking filtration laws—application to power-law non-newtonian fluids. Trans. Inst. Chem. Eng. 60, 183–187 (1982)

    Google Scholar 

  16. Vela, M.C.V., Blanco, S.Á., García, J.L., Rodríguez, E.B.: Analysis of membrane pore blocking models adapted to crossflow ultrafiltration in the ultrafiltration of PEG. Chem. Eng. J. 149, 232–241 (2009). https://doi.org/10.1016/j.cej.2008.10.027

    Article  Google Scholar 

  17. Ferreira, R.M., Ribeiro, A.R., Patinha, C., Silva, A.M.S., Cardoso, S.M., Costa, R.: Water extraction kinetics of bioactive compounds of Fucus vesiculosus. Molecules 24, 1–15 (2019). https://doi.org/10.3390/molecules24183408

    Article  Google Scholar 

  18. Li, B., Lu, F., Wei, X., Zhao, R.: Fucoidan: structure and bioactivity. Molecules 13, 1671–1695 (2008). https://doi.org/10.3390/molecules13081671

    Article  Google Scholar 

  19. Iodine - Health Professional Fact Sheet, https://ods.od.nih.gov/factsheets/Iodine-HealthProfessional/. Retrieved 13 Jan 2022

  20. Barter, P.J., Deas, T.: Comparison of portable nephelometric turbidimeters on natural waters and effluents. New Zeal. J. Mar. Freshw. Res. 37, 485–492 (2003). https://doi.org/10.1080/00288330.2003.9517183

    Article  Google Scholar 

  21. Kestin, J., Sokolov, M., Wakeham, W.A.: Viscosity of liquid water in the range – 8 °C to 150 °C. J. Phys. Chem. Ref. Data. 7, 941–948 (1978). https://doi.org/10.1063/1.555581

    Article  Google Scholar 

  22. WHO: Guidelines for drinking-water quality, fourth edition incorporating the first addendum. World Health Organization, Geneva (2017)

    Google Scholar 

  23. Otitoju, T.A., Ahmad, A.L., Ooi, B.S.: Recent advances in hydrophilic modification and performance of polyethersulfone (PES) membrane via additive blending. RSC Adv. 8, 22710–22728 (2018). https://doi.org/10.1039/c8ra03296c

    Article  Google Scholar 

  24. Cassano, A., Conidi, C., Drioli, E.: Comparison of the performance of UF membranes in olive mill wastewaters treatment. Water Res. 45, 3197–3204 (2011). https://doi.org/10.1016/j.watres.2011.03.041

    Article  Google Scholar 

  25. Wang, T., Jónsdóttir, R., Liu, H., Gu, L., Kristinsson, H.G., Raghavan, S., Ólafsdóttir, G.: Antioxidant capacities of phlorotannins extracted from the brown algae Fucus vesiculosus. J. Agric. Food Chem. 60, 5874–5883 (2012). https://doi.org/10.1021/jf3003653

    Article  Google Scholar 

  26. Quezada, C., Estay, H., Cassano, A., Troncoso, E., Ruby-Figueroa, R.: Prediction of permeate flux in ultrafiltration processes: a review of modeling approaches. Membranes (Basel). (2021). https://doi.org/10.3390/membranes11050368

    Article  Google Scholar 

  27. Wen-qiong, W., Yun-chao, W., Xiao-feng, Z., Rui-xia, G., Mao-lin, L.: Whey protein membrane processing methods and membrane fouling mechanism analysis. Food Chem. 289, 468–481 (2019). https://doi.org/10.1016/j.foodchem.2019.03.086

    Article  Google Scholar 

  28. Charfi, A., Jang, H., Kim, J.: Membrane fouling by sodium alginate in high salinity conditions to simulate biofouling during seawater desalination. Bioresour. Technol. 240, 106–114 (2017). https://doi.org/10.1016/j.biortech.2017.02.086

    Article  Google Scholar 

  29. Bowen, W.R., Calvo, J.I., Hernández, A.: Steps of membrane blocking in flux decline during protein microfiltration. J. Memb. Sci. 101, 153–165 (1995). https://doi.org/10.1016/0376-7388(94)00295-A

    Article  Google Scholar 

  30. Meng, X., Luosang, D., Meng, S., Wang, R., Fan, W., Liang, D., Li, X., Zhao, Q., Yang, L.: The structural and functional properties of polysaccharide foulants in membrane fouling. Chemosphere (2021). https://doi.org/10.1016/j.chemosphere.2020.129364

    Article  Google Scholar 

  31. Rioux, L.-E., Turgeon, S.L.: Chapter 7 - Seaweed Carbohydrates. Elsevier, Amsterdam (2015)

    Google Scholar 

  32. Marson, G.V., Pereira, D.T.V., da Costa Machado, M.T., Di Luccio, M., Martínez, J., Belleville, M.P., Hubinger, M.D.: Ultrafiltration performance of spent brewer’s yeast protein hydrolysate: Impact of pH and membrane material on fouling. J. Food Eng. (2021). https://doi.org/10.1016/j.jfoodeng.2021.110569

    Article  Google Scholar 

  33. She, Q., Tang, C.Y., Wang, Y.-N., Zhang, Z.: The role of hydrodynamic conditions and solution chemistry on protein fouling during ultrafiltration. Desalination. 249, 1079–1087 (2009). https://doi.org/10.1016/j.desal.2009.05.015

    Article  Google Scholar 

  34. Hwang, K.-J., Lin, T.-T.: Effect of morphology of polymeric membrane on the performance of cross-flow microfiltration. J. Memb. Sci. 199, 41–52 (2002). https://doi.org/10.1016/S0376-7388(01)00675-5

    Article  Google Scholar 

  35. Cassano, A., Conidi, C., Ruby-Figueroa, R., Castro-Muñoz, R.: Nanofiltration and tight ultrafiltration membranes for the recovery of polyphenols from agro-food by-products. Int. J. Mol. Sci. (2018). https://doi.org/10.3390/ijms19020351

    Article  Google Scholar 

  36. dos Sousa, L.S., Cabral, B.V., Madrona, G.S., Cardoso, V.L., Reis, M.H.M.: Purification of polyphenols from green tea leaves by ultrasound assisted ultrafiltration process. Sep. Purif. Technol. 168, 188–198 (2016). https://doi.org/10.1016/j.seppur.2016.05.029

    Article  Google Scholar 

  37. Pichardo-Romero, D., Garcia-Arce, Z.P., Zavala-Ramírez, A., Castro-Muñoz, R.: Current advances in biofouling mitigation in membranes for water treatment: an overview. Processes. 8, 1–22 (2020). https://doi.org/10.3390/pr8020182

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank ALGAplus Lda for supplying the seaweed flour.

Funding

Project CENTRO-01–0145-FEDER-023780 HEPA: Healthier eating of pasta with algae co-financed by the European Regional Development Fund (ERDF), through the partnership agreement Portugal2020—Regional Operation Program CENTRO2020.

Foundation for Science and Technology (FCT), the European Union, the National Strategic Reference Framework (QREN), the European Regional Development Fund (FEDER), and Operational Programme Competitiveness Factors (COMPETE), the Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE) (UIDB/50006/2020). Project PTDC/BAA-AGR/31015/2017 (Algaphlor), financed the research contract of Susana M. Cardoso.

Foundation for Science and Technology financial support to Research Centre for Natural Resources, Environment and Society—CERNAS (UID/AMB/00681/2013, UIDB/00681/2020) and Strategic Project of CIEPQPF (UIDB/00102/2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Costa.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madeira, T., Marçal, C., Cardoso, S.M. et al. Ultrafiltration of Fucus vesiculosus Extracts Under Different Operating Conditions. Waste Biomass Valor 13, 4447–4458 (2022). https://doi.org/10.1007/s12649-022-01807-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01807-9

Keywords

Navigation