Skip to main content
Log in

Valorization of the By-products of Poultry Industry (Bones) by Enzymatic Hydrolysis and Glycation to Obtain Antioxidants Compounds

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Currently, one of the fastest growing industries in the world is the poultry industry; however, the increase in demand has generated the production of various byproducts, such as bones, and these byproducts have a negative impact on the environment. The aim of the present work was to evaluate the effect of glycation on the increase in antioxidant compounds and the formation of indicators of advanced glycation end products (AGE) in chicken bone hydrolysates; it also aimed to maximize the protein content, degree of hydrolysis and antioxidant content. Through analysis of variance, the content of AGE products (HMF and furfural) formed in the glycation process was analyzed. The chicken bone hydrolysate had a protein content of 1.42 g/l, a degree of hydrolysis of 17.2% and an antioxidant capacity of 8334 and 10,343 μmol ETrolox/l according to ABTS and ORAC evaluations, respectively. The glycation process increased the ORAC by 6.57%. The presence of hydroxymethylfurfural and furfural was determined in the glycated samples and detected at values between 0.05 and 0.22 and 0 and 0.26 ppm, respectively. In conclusion, hydrolysis and glycation are suitable alternatives that enable the use of chicken bones in producing food ingredients with higher added value.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

The data were analyzed with Statgraphics Centurion XVI version 16.1.03 software.

References

  1. Latin American Chicken Institute: Global chicken meat production.: 2000–2018. https://ilp-ala.org/producion-mundial-de-carne-de-pollo-2000-2018/#horizontalTab-5205 (2018). Accessed 04 February 2021

  2. FAO.: World agriculture: towards 2015/2030: an FAO perspective. Earthscan, London (2003)

  3. Martínez-Alvarez, O., Chamorro, S., Brenes, A.: Protein hydrolysates from animal processing by-products as a source of bioactive molecules with interest in animal feeding: a review. Food Res. Int. (2015). https://doi.org/10.1016/j.foodres.2015.04.005

    Article  Google Scholar 

  4. Nascimento, C.D., Filho, R.A., Artur, A.G., Costa, M.: Application of poultry processing industry waste: a strategy for vegetation growth in degraded soil. Waste Manage. (2015). https://doi.org/10.1016/j.wasman.2014.11.001

    Article  Google Scholar 

  5. Ferreira, A., Kunh, S.S., Cremonez, P.A., Dieter, J., Teleken, J.G., Sampaio, S.C., Kunh, P.D.: Brazilian poultry activity waste: Destinations and energetic potential. Renew. Sustain. Energy Rev. (2018). https://doi.org/10.1016/j.rser.2017.08.078

    Article  Google Scholar 

  6. FIRA.: Agri-food panorama. Chicken meat 2019. https://www.inforural.com.mx/wp-content/uploads/2019/09/Panorama-Agroalimentario-Carne-de-pollo-2019.pdf (2019). Accessed 04 Feb 2021

  7. FENAVI.: Report FENAVIQUÍN: Economic Studies Program-Fenavi-Fonav. https://www.solla.com/sites/default/files/productos/secciones/adjuntos/Fenaviquin_ed-295-oct-15-2019.pdf (2019). Accessed 04 Feb 2021

  8. Özünlü, O., Ergezer, H., Gökçe, R.: Improving physicochemical, antioxidative and sensory quality of raw chicken meat by using acorn extracts. LWT Food Sci. Technol. (2018). https://doi.org/10.1016/j.lwt.2018.09.007

    Article  Google Scholar 

  9. Dalle Zotte, A., Ricci, R., Cullere, M., Serva, L., Tenti, S., Marchesini, G.: Research note: effect of chicken genotype and white striping-wooden breast condition on breast meat proximate composition and amino acid profile. Poult. Sci. (2020). https://doi.org/10.1016/j.psj.2019.10.066

    Article  Google Scholar 

  10. Kim, H.-J., Kim, H.-J., Jeon, J.J., Nam, K.-C., Shim, K.-S., Jung, J.-H., Kim, K., Choi, Y., Kim, S.-H., Jang, A.: Comparison of the quality characteristics of chicken breast meat from conventional and animal welfare farms under refrigerated storage. Poult. Sci. (2020). https://doi.org/10.1016/j.psj.2019.12.009

    Article  Google Scholar 

  11. Kralik, G., Kralik, Z., Grčević, M., Hanžek, D.: Quality of chicken meat. In: Yücel, B., Taşkin, T. (eds.) Animal Husbandry and Nutrition. IntechOpen, London (2018)

    Google Scholar 

  12. Mehdizadeh, T., Langroodi, A.M.: Chitosan coatings incorporated with propolis extract and Zataria multiflora Boiss oil for active packaging of chicken breast meat. Int. J. Biol. Macromol. (2019). https://doi.org/10.1016/j.ijbiomac.2019.08.267

    Article  Google Scholar 

  13. Brandelli, A., Sala, L., Juliano, S.: Microbial enzymes for bioconversion of poultry waste into added-value products. Food Res. Int. (2015). https://doi.org/10.1016/j.foodres.2015.01.015

    Article  Google Scholar 

  14. Ding, G., Li, S., Wang, A., Chen, N.: Effect of chicken haemoglobin powder on growth, feed utilization, immunity and haematological index of largemouth bass (Micropterus salmoides). Aquacult. Fish. (2019). https://doi.org/10.1016/j.aaf.2019.04.003

    Article  Google Scholar 

  15. Xia, Y., Wang, D.K., Kong, Y., Ungerfeld, E.M., Seviour, R., Massé, D.I.: Anaerobic digestibility of beef hooves with swine manure or slaughterhouse sludge. Waste Manage. (2015). https://doi.org/10.1016/j.wasman.2014.12.017

    Article  Google Scholar 

  16. AlSharifi, M., Znad, H.: Development of a lithium based chicken bone (Li-Cb) composite as an efficient catalyst for biodiesel production. Renew. Energy (2019). https://doi.org/10.1016/j.renene.2019.01.052

    Article  Google Scholar 

  17. Wang, J.Z., Dong, X.B., Yue, J.Y., Zhang, C.H., Jia, W., Li, X.: Preparation of substrate for flavorant from chicken bone residue with hot-pressure process. J. Food Sci. (2016). https://doi.org/10.1111/1750-3841.13211

    Article  Google Scholar 

  18. Lasekan, A., Abu, F., Hashim, D.: Potential of chicken by-products as sources of useful biological resources. Waste Manage. (2013). https://doi.org/10.1016/j.wasman.2012.08.001

    Article  Google Scholar 

  19. Dong, Z.Y., Li, M.Y., Tian, G., Zhang, T.H., Ren, H., Quek, S.Y.: Effects of ultrasonic pretreatment on the structure and functionality of chicken bone protein prepared by enzymatic method. Food Chem. (2019). https://doi.org/10.1016/j.foodchem.2019.125103

    Article  Google Scholar 

  20. Karami, Z., Peighambardoust, S.H., Hesari, J., Akbari-Adergani, B., Andreu, D.: Antioxidant, anticancer and ACE-inhibitory activities of bioactive peptides from wheat germ protein hydrolysates. Food Biosci. (2019). https://doi.org/10.1016/j.fbio.2019.100450

    Article  Google Scholar 

  21. Zheng, Z., Li, J., Li, J., Sun, H., Liu, Y.: Physicochemical and antioxidative characteristics of black bean protein hydrolysates obtained from different enzymes. Food Hydrocoll. (2019). https://doi.org/10.1016/j.foodhyd.2019.105222

    Article  Google Scholar 

  22. Khiari, Z., Ndagijimana, M., Betti, M.: Low molecular weight bioactive peptides derived from the enzymatic hydrolysis of collagen after isoelectric solubilization/precipitation process of turkey by-products. Poult. Sci. (2014). https://doi.org/10.3382/ps.2014-03953

    Article  Google Scholar 

  23. Neves, A.C., Harnedy, P.A., O’Keeffe, M.B., Alashi, M.A., Aluko, R.E., FitzGerald, R.J.: Peptide identification in a salmon gelatin hydrolysate with antihypertensive, dipeptidyl peptidase IV inhibitory and antioxidant activities. Food Res. Int. (2017). https://doi.org/10.1016/j.foodres.2017.06.065

    Article  Google Scholar 

  24. Zheng, Z., Si, D., Ahmad, B., Li, Z., Zhang, R.: A novel antioxidative peptide derived from chicken blood corpuscle hydrolysate. Food Res. Int. (2018). https://doi.org/10.1016/j.foodres.2017.12.078

    Article  Google Scholar 

  25. Udenigwe, C.C., Udechukwu, M.C., Yiridoe, C., Gibson, A., Gong, M.: Antioxidant mechanism of potato protein hydrolysates against in vitro oxidation of reduced glutathione. J. Funct. Foods (2016). https://doi.org/10.1016/j.jff.2015.11.004

    Article  Google Scholar 

  26. Sun, W., Zhao, M., Cui, C., Zhao, Q., Yang, B.: Effect of Maillard reaction products derived from the hydrolysate of mechanically deboned chicken residue on the antioxidant, textural and sensory properties of Cantonese sausages. Meat Sci. (2010). https://doi.org/10.1016/j.meatsci.2010.04.014

    Article  Google Scholar 

  27. Siewe, F.B., Kudre, T.G., Bettadaiah, B.K., Narayan, B.: Effects of ultrasound-assisted heating on aroma profile, peptide structure, peptide molecular weight, antioxidant activities and sensory characteristics of natural fish flavouring. Ultrason. Sonochem. (2020). https://doi.org/10.1016/j.ultsonch.2020.105055

    Article  Google Scholar 

  28. Liu, Q., Kong, B., Han, J., Sun, C., Li, P.: Structure and antioxidant activity of whey protein isolate conjugated with glucose via the Maillard reaction under dry-heating conditions. Food Struct. (2014). https://doi.org/10.1016/j.foostr.2013.11.004

    Article  Google Scholar 

  29. Nooshkam, M., Madadlou, A.: Maillard conjugation of lactulose with potentially bioactive peptides. Food Chem. (2016). https://doi.org/10.1016/j.foodchem.2015.07.094

    Article  Google Scholar 

  30. Han, W., Liu, Y., Xu, X., Huang, J., He, H., Chen, L., Hou, P.: Bioethanol production from waste hamburger by enzymatic hydrolysis and fermentation. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2020.121658

    Article  Google Scholar 

  31. Novozymes.: Alcalase food grade. Product sheet. http://www.ebiosis.co.kr/Novozymes%20Product%20Sheet/Alcalase%202.4L.pdf (2002). Accessed 04 Feb 2021

  32. Nie, X., Zhao, L., Regenstein, J.M., Xu, D., Meng, X.: Antioxidant capacity of Maillard reaction products’ fractions with different molecular weight distribution from chicken bone hydrolysate: galactose system. Int. J. Food Sci. Technol. (2017). https://doi.org/10.1111/ijfs.13445

    Article  Google Scholar 

  33. AOAC.: Official Method of Analysis, 18th edn. AOAC, Gaithersburg, MD (2005)

  34. Valencia, P., Pinto, M., Almonacid, S.: Identification of the key mechanisms involved in the hydrolysis of fish protein by Alcalase. Process Biochem. (2014). https://doi.org/10.1016/j.procbio.2013.11.012

    Article  Google Scholar 

  35. Gbogouri, G., Linder, M., Fanni, J., Parmentier, M.: Influence of hydrolysis degree on the functional properties of salmon byproducts hydrolysates. J. Food Sci. (2004). https://doi.org/10.1111/j.1365-2621.2004.tb09909.x

    Article  Google Scholar 

  36. Beaubier, S., Framboisier, X., Ioannou, I., Galet, O., Kapel, R.: Simultaneous quantification of the degree of hydrolysis, protein conversion rate and mean molar weight of peptides released in the course of enzymatic proteolysis. J. Chromatogr. B (2019). https://doi.org/10.1016/j.jchromb.2018.12.005

    Article  Google Scholar 

  37. Samaranayaka, A.G.P.: Pacific hake (merluccius productus) fish protein hydrolysates with antioxidative properties. https://open.library.ubc.ca/cIRcle/collections/ubctheses/24/items/1.0069207 (2010). Accessed 04 Feb 2021

  38. Khulal, U., Ghnimi, S., Stevanovic, N., Rajkovic, A., Velickovic, T.C.: Aggregability and digestibility study of fruit juice fortified camel milk powder proteins. Lwt 152, 112250 (2021). https://doi.org/10.1016/j.lwt.2021.112250

    Article  Google Scholar 

  39. Xu, X., Qiao, Y., Shi, B., Dia, V.P.: Alcalase and bromelain hydrolysis affected physicochemical and functional properties and biological activities of legume proteins. Food Struct. 27, 100178 (2021). https://doi.org/10.1016/j.foostr.2021.100178

    Article  Google Scholar 

  40. Li, Y., Lu, F., Luo, C., Chen, Z., Mao, J., Shoemaker, C., Zhong, F.: Functional properties of the Maillard reaction products of rice protein with sugar. Food Chem. (2009). https://doi.org/10.1016/j.foodchem.2009.03.078

    Article  Google Scholar 

  41. Brescia, P.J.: Determination of antioxidant potential using an oxygen radical absorbance capacity (ORAC) assay with synergy TM H4. BioTek Application. https://www.biotek.com/assets/tech_resources/ORAC_App_Note.pdf (2012). Accessed 04 Feb 2021

  42. Duarte-Correa, Y., Díaz-Osorio, A., Osorio-Arias, J., Sobral, P.J.A., Vega-Castro, O.: Development of fortified low-fat potato chips through vacuum impregnation and microwave vacuum drying. Innov. Food Sci. Emerg. Technol. (2020). https://doi.org/10.1016/j.ifset.2020.102437

    Article  Google Scholar 

  43. Contreras-Calderón, J., Guerra-Hernández, E., García-Villanova, B.: Indicators of non-enzymatic browning in the evaluation of heat damage of ingredient proteins used in manufactured infant formulas. Eur. Food Res. Technol. (2008). https://doi.org/10.1007/s00217-007-0700-2

    Article  Google Scholar 

  44. Gómez-Narváez, F., Contreras-Calderón, J., Pérez-Martínez, L.: Usefulness of some Maillard reaction indicators for monitoring the heat damage of whey powder under conditions applicable to spray drying. Int. Dairy J. (2019). https://doi.org/10.1016/j.idairyj.2019.104553

    Article  Google Scholar 

  45. Abilmazhinova, N., Vlahova-Vangelova, D., Dragoev, S., Abzhanova, S., Balev, D.: Optimization of the oxidative stability of horse minced meat enriched with dihydroquercetin and Vitamin C as a new functional food. Compt. Rend. Acad. Bulgare Sci. (2020). https://doi.org/10.7546/CRABS.2020.07.18

    Article  Google Scholar 

  46. Sheibani, A., Ghaziaskar, H.S.: Pressurized fluid extraction of pistachio oil using a modified supercritical fluid extractor and factorial design for optimization. LWT Food Sci. Technol. (2008). https://doi.org/10.1016/j.lwt.2007.09.002

    Article  Google Scholar 

  47. Silveira, S.T., Daroit, D.J., Brandelli, A.: Pigment production by Monascus purpureus in grape waste using factorial design. LWT Food Sci. Technol. (2008). https://doi.org/10.1016/j.lwt.2007.01.013

    Article  Google Scholar 

  48. Uniyal, S., Sharma, R.K., Kondakal, V.: New insights into the biodegradation of chlorpyrifos by a novel bacterial consortium: process optimization using general factorial experimental design. Ecotoxicol. Environ. Saf. (2021). https://doi.org/10.1016/j.ecoenv.2020.111799

    Article  Google Scholar 

  49. Spanish Foundation for the Development of Animal Nutrition. FEDNA.: Meat meal, 50/14/26. http://www.fundacionfedna.org/ingredientes_para_piensos/harina-de-carne-501426. Accessed 04 Feb 2021

  50. ChileMink.: Ingredients for animal consumption: technical data sheet meat and bone meal. https://irp-cdn.multiscreensite.com/9a7951af/files/uploaded/Ficha%20Tecnica%20Harina%20Rev3%20sept%2015%202020.pdf (2018). Accessed 04 Feb 2021

  51. RAMGRAS S.A.C.I.A.: Meat and bone meal specifications 40/45% proteins. http://ramgras.com.ar/es-ficha-tecnica-harina-de-carne-y-huesos.pdf. Accessed 04 Feb 2021

  52. Protidos.: Raw materials for animal nutrition. http://dianuro.com/FICHASPROTIDOS.pdf (2017). Accessed 04 Feb 2021

  53. Hamzeh, A., Wongngam, W., Kiatsongchai, R., Yongsawatdigul, J.: Cellular and chemical antioxidant activities of chicken blood hydrolysates as affected by in vitro gastrointestinal digestion. Poult. Sci. (2019). https://doi.org/10.3382/ps/pez283

    Article  Google Scholar 

  54. dos Santos Aguilar, J.G., de Souza, A.K.S., de Castro, R.J.S.: Enzymatic hydrolysis of chicken viscera to obtain added-value protein hydrolysates with antioxidant and antihypertensive properties. Int. J. Pept. Res. Ther. (2020). https://doi.org/10.1007/s10989-019-09879-3

    Article  Google Scholar 

  55. Dhakal, D., Koomsap, P., Lamichhane, A., Sadiq, M.B., Anal, A.K.: Optimization of collagen extraction from chicken feet by papain hydrolysis and synthesis of chicken feet collagen based biopolymeric fibres. Food Biosci. (2018). https://doi.org/10.1016/j.fbio.2018.03.003

    Article  Google Scholar 

  56. Bao, Z., Zhao, Y., Wang, X., Chi, Y.J.: Effects of degree of hydrolysis (DH) on the functional properties of egg yolk hydrolysate with alcalase. J. Food Sci. Technol (2017). https://doi.org/10.1007/s13197-017-2504-0

    Article  Google Scholar 

  57. Cumby, N., Zhong, Y., Naczk, M.: Antioxidant activity and water-holding capacity of canola protein hydrolysates. Food Chem. (2008). https://doi.org/10.1016/j.foodchem.2007.12.039

    Article  Google Scholar 

  58. Ahn, C.B., Jeon, Y.J., Kim, Y.T., Je, J.Y.: Angiotensin i converting enzyme (ACE) inhibitory peptides from salmon byproduct protein hydrolysate by Alcalase hydrolysis. Process Biochem. (2012). https://doi.org/10.1016/j.procbio.2012.08.019

    Article  Google Scholar 

  59. Vv, R., Ghaly, A., Brooks, M., Budge, S.: Extraction of proteins from mackerel fish processing waste using Alcalase enzyme. J. Bioprocess. Biotech. (2013). https://doi.org/10.4172/2155-9821.1000130

    Article  Google Scholar 

  60. Gutiérrez Pulido, H., Vara Salazar, R.D.L.: Análisis y diseño de experimentos, 2nd edn., pp. 418–420. McGrawHill, México, DF (2008)

    Google Scholar 

  61. Yu, L., Sun, J., Liu, S., Bi, J., Zhang, C., Yang, Q.: Ultrasonic-assisted enzymolysis to improve the antioxidant activities of peanut (Arachin conarachin L.) antioxidant hydrolysate. Int. J. Mol. Sci. (2012). https://doi.org/10.3390/ijms13079051

    Article  Google Scholar 

  62. Bhaskar, N., Benila, T., Radha, C., Lalitha, R.G.: Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease. Biores. Technol. (2008). https://doi.org/10.1016/j.biortech.2006.12.015

    Article  Google Scholar 

  63. Londoño, M.B.Z., Chaparro, D., Rojano, B.A., Arbelaez, A.F.A., Betancur, L.F.R., Celis, M.E.M.: Effect of storage time on physicochemical, sensorial, and antioxidant characteristics, and composition of mango (cv. Azúcar) juice. Emirat. J. Food Agric. (2017). https://doi.org/10.9755/ejfa.2016-09-1256

    Article  Google Scholar 

  64. Seeram, N.P., Aviram, M., Zhang, Y., Henning, S.M., Feng, L., Dreher, M., Heber, D.: Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. J. Agric. Food Chem. (2008). https://doi.org/10.1021/jf073035s

    Article  Google Scholar 

  65. Wannenmacher, J., Cotterchio, C., Schlumberger, M., Reuber, V., Gastl, M., Becker, T.: Technological influence on sensory stability and antioxidant activity of beers measured by ORAC and FRAP. J. Sci. Food Agric. (2019). https://doi.org/10.1002/jsfa.9979

    Article  Google Scholar 

  66. Shu, G., Zhang, B., Zhang, Q., Wan, H., Li, H.: Effect of temperature, pH, enzyme to substrate ratio, substrate concentration and time on the antioxidative activity of hydrolysates from goat milk casein by alcalase. Acta Univ. Cibinien. Ser. E (2016). https://doi.org/10.1515/aucft-2016-0013

    Article  Google Scholar 

  67. Dey, S.S., Dora, K.C.: Antioxidative activity of protein hydrolysate produced by alcalase hydrolysis from shrimp waste (Penaeus monodon and Penaeus indicus). J. Food Sci. Technol. (2014). https://doi.org/10.1007/s13197-011-0512-z

    Article  Google Scholar 

  68. Zhang, Y., Olsen, K., Grossi, A., Otte, J.: Effect of pretreatment on enzymatic hydrolysis of bovine collagen and formation of ACE-inhibitory peptides. Food Chem. (2013). https://doi.org/10.1016/j.foodchem.2013.05.058

    Article  Google Scholar 

  69. Anzani, C., Prandi, B., Tedeschi, T., Baldinelli, C., Sorlini, G., Wierenga, P.A., et al.: Degradation of collagen increases nitrogen solubilisation during enzymatic hydrolysis of fleshing meat. Waste Biomass Valoriz. (2018). https://doi.org/10.1007/s12649-017-9866-4

    Article  Google Scholar 

  70. Yim, H.S., Chye, F.Y., Rao, V., Low, J.Y., Matanjun, P., How, S.E., Ho, C.W.: Optimization of extraction time and temperature on antioxidant activity of Schizophyllum commune aqueous extract using response surface methodology. J. Food Sci. Technol. (2013). https://doi.org/10.1007/s13197-011-0349-5

    Article  Google Scholar 

  71. Sun, Y., Hayakawa, S., Ogawa, M., Izumori, K.: Evaluation of the site specific protein glycation and antioxidant capacity of rare sugar-protein/peptide conjugates. J. Agric. Food Chem. (2005). https://doi.org/10.1021/jf051565n

    Article  Google Scholar 

  72. Gómez-Ruiz, J.Á., Ames, J.M., Leake, D.S.: Antioxidant activity and protective effects of green and dark coffee components against human low density lipoprotein oxidation. Eur. Food Res. Technol. (2008). https://doi.org/10.1007/s00217-007-0815-5

    Article  Google Scholar 

  73. Gülcan, Ü., Candal Uslu, C., Mutlu, C., Arslan-Tontul, S., Erbaş, M.: Impact of inert and inhibitor baking atmosphere on HMF and acrylamide formation in bread. Food Chem. (2020). https://doi.org/10.1016/j.foodchem.2020.127434

    Article  Google Scholar 

  74. Arribas-Lorenzo, G., Morales, F.J.: Estimation of dietary intake of 5-hydroxymethylfurfural and related substances from coffee to Spanish population. Food Chem. Toxicol. (2010). https://doi.org/10.1016/j.fct.2009.11.046

    Article  Google Scholar 

  75. EFSA.: Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) related to Flavouring Group Evaluation 13 (FGE.13); Furfuryl and furan derivatives with and without additional side-chain substituents. EFSA J. (2005). https://doi.org/10.2903/j.efsa.2005.215

  76. Council Directive. Official Journal of the European Communities.: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32001L0110&from=ES (2002). Accessed 04 Feb 2021

  77. Yuan, J.P., Chen, F.: Separation and identification of furanic compounds in fruit juices and drinks by high-performance liquid chromatography photodiode array detection. J. Agric. Food Chem. (1998). https://doi.org/10.1021/jf970894f

    Article  Google Scholar 

  78. Theobald, A., Müller, A., Anklam, E.: Determination of 5-hydroxymethylfurfural in vinegar samples by HPLC. J. Agric. Food Chem. (1998). https://doi.org/10.1021/jf970912t

    Article  Google Scholar 

  79. Ortu, E., Caboni, P.: Levels of 5-hydroxymethylfurfural, furfural, 2-furoic acid in sapa syrup, Marsala wine and bakery products. Int. J. Food Prop. (2018). https://doi.org/10.1080/10942912.2017.1373668

    Article  Google Scholar 

  80. Purlis, E., Salvadori, V.O.: Modelling the browning of bread during baking. Food Res. Int. (2009). https://doi.org/10.1016/j.foodres.2009.03.007

    Article  Google Scholar 

  81. Eskin, N.A.M., Ho, C.T., Shahidi, F.: Browning reactions in foods. Biochem. Foods (2012). https://doi.org/10.1016/B978-0-08-091809-9.00006-6

    Article  Google Scholar 

  82. Peleteiro, S., Garrote, G., Santos, V., Parajó, J.C.: Conversion of hexoses and pentoses into furans in an ionic liquid. Afinidad 71, 202–206 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the BIOALI (Food Biotechnology Research Group), NUTEC (Food and Nutrition Technology Research Group) and GEMCA (Drug, Cosmetic and Food Stability Group), Faculty of Pharmaceutical and Food Sciences, Universidad de Antioquia, for their support in the development of this project.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors had readen and agree with the published version of the manuscript. Conceptualization, methodology, formal analysis, experimental research, writing: preparation of the original draft, Luisa Londoño, Sara Franco and Sandra Restrepo; accompaniment of the experimental phase and resources, Lina Suárez, Fáver Gómez; writing: proofreading and editing, Óscar Vega, Pedro Valencia; visualization, Helena Núñez, Ricardo Simpson.

Corresponding author

Correspondence to L. Londoño-Zapata.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Londoño-Zapata, L., Franco-Cardona, S., Restrepo-Manotas, S. et al. Valorization of the By-products of Poultry Industry (Bones) by Enzymatic Hydrolysis and Glycation to Obtain Antioxidants Compounds. Waste Biomass Valor 13, 4469–4480 (2022). https://doi.org/10.1007/s12649-022-01801-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01801-1

Keywords

Navigation