Skip to main content
Log in

Protein-Rich Agro-Industrial Co-products are Key Substrates for Growth of Chromobacterium vaccinii and its Violacein Bioproduction

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Microbial fermentation on agro-industrial co-products is an interesting strategy for the bioproduction of metabolites of interest, as it lowers the costs of production and uses renewable and abundant carbon sources. Violacein is a purple pigment with interesting properties that is commonly produced by fermentation. Chromobacterium vaccinii, a wild-type, natural and non-toxic Proteobacteria (Pseudomonadota), has the ability to produce violacein. However, to select an optimal co-product as carbon source, it is necessary to understand its use of the different constituents of plant biomass.

Methods

Growth and violacein production of C. vaccinii were first studied on the main components of plant biomass. Then, they were assessed in presence of raw co-products at various concentrations. Tryptophan, a precursor of violacein biosynthesis, was added in order to evaluate the impact on violacein production yields.

Results

C. vaccinii was able to grow on gluten (wheat protein), as well as on low concentrations of glucose. Selecting protein-rich substrates such as soybean and rapeseed cakes led to improved growth and violacein bioproduction. Addition of tryptophan led to net increases in violacein, but had low impacts on the bacterial growth.

Conclusion

Understanding microbial growth mechanisms during bioproduction of molecules of interest is key in order to select the best adapted agro-industrial co-products used as substrate. This study allowed to better characterize growth of C. vaccinii on various carbon sources and plant biomass, and showed that an optimal substrate with the addition of tryptophan could increase greatly the bioproduction yields of violacein by C. vaccinii.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All positive data generated and analysed for the current study can be found in the present article and its supplementary file.

References

  1. Pailliè-Jiménez, M.E., Stincone, P., Brandelli, A.: Natural pigments of microbial origin. Front. Sustain. Food Syst. (2020). https://doi.org/10.3389/fsufs.2020.590439

    Article  Google Scholar 

  2. Delgado-Vargas, F., Jimenez, A.R., Paredes-Lopez, O.: Natural pigments: carotenoids, anthocyanins, and betalains–characteristics, biosynthesis, processing, and stability. Crit. Rev. Food Sci. Nutr. 40(3), 173–289 (2000). https://doi.org/10.1080/10408690091189257

    Article  Google Scholar 

  3. Gao, X., Jing, X., Liu, X., Lindblad, P.: Biotechnological production of the sunscreen pigment scytonemin in cyanobacteria: progress and strategy. Mar. Drugs. 19(3), 129 (2021). https://doi.org/10.3390/md19030129

    Article  Google Scholar 

  4. Correa-Llantén, D.N., Amenábar, M.J., Blamey, J.M.: Antioxidant capacity of novel pigments from an antarctic bacterium. J. Microbiol. 50(3), 374–379 (2012). https://doi.org/10.1007/s12275-012-2029-1

    Article  Google Scholar 

  5. Varela, J.C., Pereira, H., Vila, M., León, R.: Production of carotenoids by microalgae: achievements and challenges. Photosynth. Res. 125(3), 423–436 (2015). https://doi.org/10.1007/s11120-015-0149-2

    Article  Google Scholar 

  6. Mohammadi, M.A., Ahangari, H., Mousazadeh, S., Hosseini, S.M., Dufossé, L.: Microbial pigments as an alternative to synthetic dyes and food additives: a brief review of recent studies. Bioprocess. Biosyst. Eng. (2021). https://doi.org/10.1007/s00449-021-02621-8

    Article  Google Scholar 

  7. Ramesh, C., Vinithkumar, N.V., Kirubagaran, R., Venil, C.K., Dufossé, L.: Multifaceted applications of microbial pigments: current knowledge, challenges and future directions for public health implications. Microorganisms 7(7), 186 (2019). https://doi.org/10.3390/microorganisms7070186

    Article  Google Scholar 

  8. Sen, T., Barrow, C.J., Deshmukh, S.K.: Microbial pigments in the food industry—challenges and the way forward. Front. Nutr. (2019). https://doi.org/10.3389/fnut.2019.00007

    Article  Google Scholar 

  9. Jorissen, T., Oraby, A., Recke, G., Zibek, S.: A systematic analysis of economic evaluation studies of second-generation biorefineries providing chemicals by applying biotechnological processes. Biofuels. Bioprod. Biorefin. 14(5), 1028–1045 (2020). https://doi.org/10.1002/bbb.2102

    Article  Google Scholar 

  10. Markets, M.A.: Organic Pigments Market by Source (Synthetic and Natural), Type (Azo, Phthalocyanine, HPPs), Application (Printing inks, Paints & Coatings, Plastics), and Region (North America, Europe, APAC, MEA, and South America)—Global Forecast to 2026 (2021). Accessed Nov 2021

  11. Venil, C.K., Dufossé, L., Renuka Devi, P.: Bacterial pigments: sustainable compounds with market potential for pharma and food industry. Front. Sustain. Food. Syst. (2020). https://doi.org/10.3389/fsufs.2020.00100

    Article  Google Scholar 

  12. Fuller, J.J., Ropke, R., Krausze, J., Rennhack, K.E., Daniel, N.P., Blankenfeldt, W., Schulz, S., Jahn, D., Moser, J.: Biosynthesis of violacein, structure and function of l-tryptophan oxidase VioA from Chromobacterium violaceum. J. Biol. Chem. 291(38), 20068–20084 (2016). https://doi.org/10.1074/jbc.M116.741561

    Article  Google Scholar 

  13. Gillis, M., Logan, N.A.: Chromobacterium. In: Bergey’s Manual of Systematics of Archaea and Bacteria, pp. 1–9. Wiley, Hoboken (2015). https://doi.org/10.1002/9781118960608.gbm00975

    Chapter  Google Scholar 

  14. Lu, H., Deng, T., Cai, Z., Liu, F., Yang, X., Wang, Y., Xu, M.: Janthinobacterium violaceinigrum sp. Nov., Janthinobacterium aquaticum sp. Nov. and Janthinobacterium rivuli sp. Nov., isolated from a subtropical stream in China. Int. J. Syst. Evol. Microbiol. 70(4), 2719–2725 (2020). https://doi.org/10.1099/ijsem.0.004097

    Article  Google Scholar 

  15. Aranda, S., Montes-Borrego, M., Landa, B.B.: Purple-pigmented violacein-producing Duganella spp. inhabit the rhizosphere of wild and cultivated olives in Southern Spain. Microb. Ecol. 62(2), 446–459 (2011). https://doi.org/10.1007/s00248-011-9840-9

    Article  Google Scholar 

  16. Wang, H., Zhang, X., Wang, S., Zhao, B., Lou, K., Xing, X.-H.: Massilia violaceinigra sp. Nov., a novel purple-pigmented bacterium isolated from glacier permafrost. Int. J. Syst. Evo.l Microb. 68(7), 2271–2278 (2018). https://doi.org/10.1099/ijsem.0.002826

    Article  Google Scholar 

  17. Logan, N.A.: Numerical taxonomy of violet pigmented, gram Negative bacteria and description of Iodobacter fluviatile gen. Nov., comb. Nov. Int. J. Syst. Evol. Microb. 39(4), 450–456 (1989). https://doi.org/10.1099/00207713-39-4-450

    Article  Google Scholar 

  18. Pitt, A., Koll, U., Schmidt, J., Hahn, M.W.: Fluviispira multicolorata gen. Nov., sp. Nov. and Silvanigrella paludirubra sp, Nov., isolated from freshwater habitats. Int. J. Syst. Evol. Microbiol. 70(3), 1630–1638 (2020). https://doi.org/10.1099/ijsem.0.003947

    Article  Google Scholar 

  19. Gauthier, M.J.: Validation of the name Alteromonas luteoviolacea. Int. J. Syst. Evol. Microbiol. 32(1), 82–86 (1982). https://doi.org/10.1099/00207713-32-1-82

    Article  Google Scholar 

  20. Ayé, A.M., Bonnin-Jusserand, M., Brian-Jaisson, F., Ortalo-Magné, A., Culioli, G., Koffi Nevry, R., Rabah, N., Blache, Y., Molmeret, M.: Modulation of violacein production and phenotypes associated with biofilm by exogenous quorum sensing N-acylhomoserine lactones in the marine bacterium Pseudoalteromonas ulvae TC14. Microbiology 161(10), 2039–2051 (2015). https://doi.org/10.1099/mic.0.000147

    Article  Google Scholar 

  21. Cauz, A.C.G., Carretero, G.P.B., Saraiva, G.K.V., Park, P., Mortara, L., Cuccovia, I.M., Brocchi, M., Gueiros-Filho, F.J.: Violacein targets the cytoplasmic membrane of bacteria. ACS. Infect. Dis. 5(4), 539–549 (2019). https://doi.org/10.1021/acsinfecdis.8b00245

    Article  Google Scholar 

  22. Woodhams, D.C., LaBumbard, B.C., Barnhart, K.L., Becker, M.H., Bletz, M.C., Escobar, L.A., Flechas, S.V., Forman, M.E., Iannetta, A.A., Joyce, M.D., Rabemananjara, F., Gratwicke, B., Vences, M., Minbiole, K.P.C.: Prodigiosin, violacein, and volatile organic compounds produced by widespread cutaneous bacteria of amphibians can inhibit two Batrachochytrium fungal pathogens. Microb. Ecol. 75(4), 1049–1062 (2018). https://doi.org/10.1007/s00248-017-1095-7

    Article  Google Scholar 

  23. Melo, P.S., Justo, G.Z., de Azevedo, M.B.M., Durán, N., Haun, M.: Violacein and its β-cyclodextrin complexes induce apoptosis and differentiation in HL60 cells. Toxicology 186(3), 217–225 (2003). https://doi.org/10.1016/S0300-483X(02)00751-5

    Article  Google Scholar 

  24. Konzen, M., De Marco, D., Cordova, C.A.S., Vieira, T.O., Antônio, R.V., Creczynski-Pasa, T.B.: Antioxidant properties of violacein: possible relation on its biological function. Bioorg. Med. Chem. 14(24), 8307–8313 (2006). https://doi.org/10.1016/j.bmc.2006.09.013

    Article  Google Scholar 

  25. Durán, N., Justo, G.Z., Ferreira, C.V., Melo, P.S., Cordi, L., Martins, D.: Violacein: properties and biological activities. Biotechnol. Appl. Biochem. 48(3), 127–133 (2007). https://doi.org/10.1042/BA20070115

    Article  Google Scholar 

  26. Ahmad, W.A., Yusof, N.Z., Nordin, N., Zakaria, Z.A., Rezali, M.F.: Production and characterization of violacein by locally isolated Chromobacterium violaceum grown in agricultural wastes. Appl. Biochem. Biotechnol. 167(5), 1220–1234 (2012). https://doi.org/10.1007/s12010-012-9553-7

    Article  Google Scholar 

  27. Aruldass, C.A., Rubiyatno, R., Venil, C.K., Ahmad, W.A.: Violet pigment production from liquid pineapple waste by Chromobacterium violaceum UTM5 and evaluation of its bioactivity. RSC. Adv. 5(64), 51524–51536 (2015). https://doi.org/10.1039/c5ra05765e

    Article  Google Scholar 

  28. Gohil, N., Bhattacharjee, G., Gayke, M., Narode, H., Alzahrani, K.J., Singh, V.: Enhanced production of violacein by Chromobacterium violaceum using agro-industrial waste soybean meal. J. Appl. Microbiol. (2021). https://doi.org/10.1111/jam.15277

    Article  Google Scholar 

  29. Singh, V., Haque, S., Niwas, R., Srivastava, A., Pasupuleti, M., Tripathi, C.K.M.: Strategies for fermentation medium optimization: an in-depth review. Front. Microbiol. (2017). https://doi.org/10.3389/fmicb.2016.02087

    Article  Google Scholar 

  30. Philippini, R.R., Martiniano, S.E., Ingle, A.P., Franco Marcelino, P.R., Silva, G.M., Barbosa, F.G., dos Santos, J.C., da Silva, S.S.: Agroindustrial byproducts for the generation of biobased products: alternatives for sustainable biorefineries. Front. Energy. Res. (2020). https://doi.org/10.3389/fenrg.2020.00152

    Article  Google Scholar 

  31. Sabater, C., Ruiz, L., Delgado, S., Ruas-Madiedo, P., Margolles, A.: Valorization of vegetable food waste and by-products through fermentation processes. Front. Microbiol. (2020). https://doi.org/10.3389/fmicb.2020.581997

    Article  Google Scholar 

  32. Ruiz, B., Chávez, A., Forero, A., García-Huante, Y., Romero, A., Sánchez, M., Rocha, D., Sánchez, B., Rodríguez-Sanoja, R., Sánchez, S., Langley, E.: Production of microbial secondary metabolites: regulation by the carbon source. Crit. Rev. Microbiol. 36(2), 146–167 (2010). https://doi.org/10.3109/10408410903489576

    Article  Google Scholar 

  33. Cortes-Tolalpa, L., Salles, J.F., van Elsas, J.D.: Bacterial synergism in lignocellulose biomass degradation—complementary roles of degraders as influenced by complexity of the carbon source. Front. Microbiol. (2017). https://doi.org/10.3389/fmicb.2017.01628

    Article  Google Scholar 

  34. Cassarini, M., Besaury, L., Rémond, C.: Valorisation of wheat bran to produce natural pigments using selected microorganisms. J. Biotechnol. (2021). https://doi.org/10.1016/j.jbiotec.2021.08.003

    Article  Google Scholar 

  35. Soby, S.D., Gadagkar, S.R., Contreras, C., Caruso, F.L.: Chromobacterium vaccinii sp. Nov., isolated from native and cultivated cranberry (Vaccinium macrocarpon Ait.) bogs and irrigation ponds. Int. J. Syst. Evol. Microbiol. 63(Pt 5), 1840–1846 (2013). https://doi.org/10.1099/ijs.0.045161-0

    Article  Google Scholar 

  36. LinMajumdarHennessyBaird, Y.D.S.S.J.R.W.: The spectrum of Chromobacterium violaceum infections from a single geographic location. Am. Soc. Trop. Med. Hygiene 94(4), 710–716 (2016). https://doi.org/10.4269/ajtmh.15-0862

    Article  Google Scholar 

  37. Van Soest, P., Robertson, J.: Systems of analysis for evaluating fibrous feeds. In: Standardization of analytical methodology for feeds proceedings. IDRC, Ottawa (1979)

    Google Scholar 

  38. ISO: 16634-2:2016 Food products—Determination of the total nitrogen content by combustion according to the Dumas principle and calculation of the crude protein content—Part 2: Cereals, pulses and milled cereal products, in, (2016)

  39. Kanelli, M., Mandic, M., Kalakona, M., Vasilakos, S., Kekos, D., Nikodinovic-Runic, J., Topakas, E.: Microbial production of violacein and process optimization for dyeing polyamide fabrics with acquired antimicrobial properties. Front. Microbiol. (2018). https://doi.org/10.3389/fmicb.2018.01495

    Article  Google Scholar 

  40. Mendes, A.S., de Carvalho, J.E., Duarte, M.C.T., Durán, N., Bruns, R.E.: Factorial design and response surface optimization of crude violacein for Chromobacterium violaceum production. Biotechnol. Lett. 23(23), 1963–1969 (2001). https://doi.org/10.1023/a:1013734315525

    Article  Google Scholar 

  41. Hastings, J., Owen, G., Dekker, A., Ennis, M., Kale, N., Muthukrishnan, V., Turner, S., Swainston, N., Mendes, P., Steinbeck, C.: ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic. Acids. Res. 44(D1), D1214-1219 (2016). https://doi.org/10.1093/nar/gkv1031

    Article  Google Scholar 

  42. Chen, H.: Chemical composition and structure of natural lignocellulose. In: Biotechnology of Lignocellulose: Theory and Practice, pp. 25–71. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-007-6898-7_2

    Chapter  Google Scholar 

  43. Liguori, R., Faraco, V.: Biological processes for advancing lignocellulosic waste biorefinery by advocating circular economy. Bioresour. Technol. (2016). https://doi.org/10.1016/j.biortech.2016.04.054

    Article  Google Scholar 

  44. Žilić, S.: Wheat gluten: composition and health effects. In: Walter, D.B. (ed.) Gluten: sources, composition and health effects, pp. 71–86. Nova Science Publishers, New York (2013)

    Google Scholar 

  45. Banaszkiewicz, T.: Nutritional value of soybean meal. In: Soybean and Nutrition. IntechOpen, London (2011). https://doi.org/10.5772/23306

    Chapter  Google Scholar 

  46. Li, Z., Li, Y., Lv, Z., Liu, H., Zhao, J., Noblet, J., Wang, F., Lai, C., Li, D.: Net energy of corn, soybean meal and rapeseed meal in growing pigs. J. Anim. Sci. Biotechnol. 8(1), 44 (2017). https://doi.org/10.1186/s40104-017-0169-1

    Article  Google Scholar 

  47. Vishnu, T.S., Palaniswamy, M.: Isolation and identification of Chromobacterium sp. from different ecosystems. As. J. Pharm. Clin. Res. 9(9), 253 (2016). https://doi.org/10.22159/ajpcr.2016.v9s3.14847

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank la "Fondation de France" and la "Fondation du site Paris-Reims" for its financial support to this project. The authors are grateful to the French Region Grand Est, Grand Reims and the European Regional Development Fund (ERDF) for the financial support of the chaire AFERE. The authors thank Gonzague Alavoine for the composition analyses of the agro-industrial co-products.

Funding

This project was supported by la "Fondation de France" and la "Fondation du site Paris-Reims". The chaire AFERE was supported by the French Region Grand Est, Grand Reims and the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Experiments, results analysis and writing of the main draft of manuscript was done by Mathieu Cassarini. All authors participated on the comments and revisions of the manuscript and approved its submission.

Corresponding author

Correspondence to Ludovic Besaury.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 7752 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cassarini, M., Crônier, D., Besaury, L. et al. Protein-Rich Agro-Industrial Co-products are Key Substrates for Growth of Chromobacterium vaccinii and its Violacein Bioproduction. Waste Biomass Valor 13, 4459–4468 (2022). https://doi.org/10.1007/s12649-022-01798-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01798-7

Keywords

Navigation