Skip to main content

Effects and Relationships of Compost Dose and Organic Additives on Compost Tea Properties, Efficacy Against Fusarium oxysporum and Potential Effect on Endomycorrhization and Growth of Zea mays L.

Abstract

This work aimed at evaluating the effect of compost to water ratio and nutrient additives on the compost tea (CT) quality and its efficacy on the maize growth and soil microbial activity and biomass as well as the colonization of maize roots with arbuscular mycorrhizal fungi (AMF). The CT were prepared at two ratios (1/5 and 1/10), and enriched with molasses and humic acid, date syrup and humic acid, or non-enriched. The oxygen concentration decreased over time in all CT and stabilized after 48 h at 5.1 ppm in non-enriched teas against 0 ppm in enriched ones. The addition of nutrients to CT decreased its pH on average to 5.1 and increased its organic matter content as well as N, P, K, Mg, Ca, and Mn concentrations as compared to non-enriched teas. Bacterial population was increased by more than 21% and microbial activity by 33% after 48 h in CT supplemented with additives. All CT inhibited Fusarium oxysporum albedinis with different rate with a maximal one of 84% attributed to CT supplemented with additives. The CT applied as a fertilizer under greenhouse conditions improved the maize height, diameter and biomass and increased the rhizosphere bacterial population and microbial biomass, and did not affect the colonization of roots with AMF. These findings suggest that quality CT prepared at suitable ratio and with additives could be a sustainable fertilizer and a promising solution to control soil-borne diseases.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data Availability

All data is provided in full in the results section of this paper.

References

  1. Mohamed, O.Z., Yassine, B., El Hassan, A., Abdellatif, H., Rachid, B.: Evaluation of compost quality and bioprotection potential against Fusarium wilt of date palm. Waste Manag. 113, 12–19 (2020). https://doi.org/10.1016/j.wasman.2020.05.035

    Article  Google Scholar 

  2. Ou-Zine, M., Symanczik, S., Rachidi, F., Fagroud, M., Aziz, L., Abidar, A., Abidar, A., Mäder, P., Achbani, E.H., Haggoud, A., Abdellaoui, M., Bouamri, R.: Effect of organic amendment on soil fertility, mineral nutrition, and yield of majhoul date palm cultivar in Drâa-tafilalet region, Morocco. Soil Sci. Plant Nutr. 21, 1745–1758 (2021). https://doi.org/10.1007/s42729-021-00476-2

    Article  Google Scholar 

  3. Eudoxie, G., Martin, M.: Compost tea quality and fertility. In: Organic Fertilizers-History, Production and Applications. IntechOpen (2019)

  4. Al-Dahmani, J.H., Abbasi, P.A., Miller, S.A., Hoitink, H.A.J.: Suppression of bacterial spot of tomato with foliar sprays of compost extracts under greenhouse and field conditions. Plant Dis. 87, 913–919 (2003). https://doi.org/10.1094/PDIS.2003.87.8.913

    Article  Google Scholar 

  5. Hargreaves, J.C., Adl, M.S., Warman, P.R.: Are compost teas an effective nutrient amendment in the cultivation of strawberries? Soil and plant tissue effects. J. Sci. Food Agric. 89, 390–397 (2009). https://doi.org/10.1002/jsfa.3456

    Article  Google Scholar 

  6. Pant, A., Radovich, T.J., Hue, N.V., Paull, R.E.: Biochemical properties of compost tea associated with compost quality and effects on pak choi growth. Sci. Hortic. 148, 138–146 (2012). https://doi.org/10.1016/j.scienta.2012.09.019

    Article  Google Scholar 

  7. Ingham, E.: The Compost Tea Brewing Manual, p. 728. Soil Food web Incorporated, Corvallis (2005)

    Google Scholar 

  8. Islam, M.K., Yaseen, T., Traversa, A., Kheder, M.B., Brunetti, G., Cocozza, C.: Effects of the main extraction parameters on chemical and microbial characteristics of compost tea. Waste Manag. 52, 62–68 (2016). https://doi.org/10.1016/j.wasman.2016.03.042

    Article  Google Scholar 

  9. Scheuerell, S.J., Mahaffee, W.F.: Assessing aerated and non-aerated watery fermented compost and Trichoderma harzianum T-22 for control of powdery mildew (Spraerotheca pannosa var. rosae) of Rose in the Willamette Valley, Orego. Phytopathology 90, s69 (2000)

    Google Scholar 

  10. Lasaridi, K., Protopapa, I., Kotsou, M., Pilidis, G., Manios, T., Kyriacou, A.: Quality assessment of composts in the Greek market: the need for standards and quality assurance. J. Environ. Manag. 80(1), 58–65 (2006). https://doi.org/10.1016/j.jenvman.2005.08.011

    Article  Google Scholar 

  11. Xu, D., Zhao, S., Xiong, Y., Peng, C., Xu, X., Si, G., Yuan, J., Huang, Q.: Biological, physicochemical, and spectral properties of aerated compost extracts: influence of aeration quantity. Commun. Soil Sci. Plant Anal. 46, 2295–2310 (2015). https://doi.org/10.1080/00103624.2015.1081693

    Article  Google Scholar 

  12. Kannangara, T., Forge, T., Dang, B.: Effects of aeration, molasses, kelp, compost type, and carrot juice on the growth of Escherichia coli in compost teas. Compost Sci. Util. 14, 40–47 (2006). https://doi.org/10.1080/1065657X.2006.10702261

    Article  Google Scholar 

  13. Pant, A.P., Radovich, T.J., Hue, N.V., Talcott, S.T., Krenek, K.A.: Vermicompost extracts influence growth, mineral nutrients, phytonutrients and antioxidant activity in pak choi (Brassica rapa cv. Bonsai, Chinensis group) grown under vermicompost and chemical fertiliser. J. Sci. Food Agric. 89, 2383–2392 (2009). https://doi.org/10.1002/jsfa.3732

    Article  Google Scholar 

  14. Zhang, W., Han, D.Y., Dick, W.A., Davis, K.R., Hoitink, H.A.J.: Compost and compost water extract-induced systemic acquired resistance in cucumber and Arabidopsis. Phytopathology 88, 450–455 (1998). https://doi.org/10.1094/PHYTO.1998.88.5.450

    Article  Google Scholar 

  15. Shrestha, K., Shrestha, P., Walsh, K.B., Harrower, K.M., Midmore, D.J.: Microbial enhancement of compost extracts based on cattle rumen content compost-characterisation of a system. Bioresour. Technol. 102, 8027–8034 (2011). https://doi.org/10.1016/j.biortech.2011.06.076

    Article  Google Scholar 

  16. Scheuerell, S.J., Mahaffee, W.F.: Compost tea: principles and prospects for plant disease control. Compost Sci. Util. 10, 313–338 (2002). https://doi.org/10.1080/1065657X.2002.10702095

    Article  Google Scholar 

  17. Naidu, Y., Meon, S., Kadir, J., Siddiqui, Y.: Microbial starter for the enhancement of biological activity of compost tea. Int. J. Agric. Biol. 12, 51–56 (2010)

    Google Scholar 

  18. Molineux, C.J., Connop, S.P., Gange, A.C.: Manipulating soil microbial communities in extensive green roof substrates. Sci. Total Environ. 493, 632–638 (2014). https://doi.org/10.1016/j.scitotenv.2014.06.045

    Article  Google Scholar 

  19. St. Martin, C.C.G.: Rotary drum compost and compost tea as substrates, amendments, and biocontrol agents for damping-off (Pythium ultimum) management in tomato (Solanum lycopersicum) (Doctoral dissertation, University of the West Indies, St. Augustine, Trinidad and Tobago) (2013)

  20. Ismael, D.P., St. Martin, C.C.G.: Combined effects and relationships of compost tea, fertiliser, and glomus intraradices inoculated-substrate on tomato seedling quality (No. 537-2016-38577) (2017). https://doi.org/10.22004/ag.econ.253512

  21. Borde, M., Dudhane, M., Kulkarni, M.: Role of arbuscular mycorrhizal fungi (AMF) in salinity tolerance and growth response in plants under salt stress conditions. In: Mycorrhiza-Eco-physiology, Secondary Metabolites, Nanomaterials, pp. 71–86. Springer, Cham (2017)

    Chapter  Google Scholar 

  22. Liu, N., Shao, C., Sun, H., Liu, Z., Guan, Y., Wu, L., Zhang, B.: Arbuscular mycorrhizal fungi biofertilizer improves American ginseng (Panax quinquefolius L.) growth under the continuous cropping regime. Geoderma 363, 114155 (2020). https://doi.org/10.1016/j.geoderma.2019.114155

    Article  Google Scholar 

  23. Walkley, A., Black, I.A.: An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37(1), 29–38 (1934)

    Article  Google Scholar 

  24. Bremner, J.M.: Nitrogen-total. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E. (eds.) Methods of Soil Analysis. Part 3-Chemical Methods, pp. 1085–1121. Soil Science Society of America, Madison (1996)

    Google Scholar 

  25. Zucconi, F., Forte, M., Monaco, A., de Bertoldi, M.: Biological evaluation of compost maturity. Biocycle 22, 27–29 (1981)

    Google Scholar 

  26. Tabatabai, M.A., Bremner, J.M.: Use of p-nitrophenyl phosphate for assay of soil phosphatase acdtivity. Soil Biol. Biochem. 1, 301–307 (1969)

    Article  Google Scholar 

  27. Abid, W., Mahmoud, I.B., Masmoudi, S., Triki, M.A., Mounier, S., Ammar, E.: Physico-chemical and spectroscopic quality assessment of compost from date palm (Phoenix dactylifera L.) waste valorization. J. Environ. Manag. 264, 110492 (2020). https://doi.org/10.1016/j.jenvman.2020.110492

    Article  Google Scholar 

  28. Phillips, J.M., Hayman, D.S.: Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Brit. Mycol. Soc. 55, 158–161 (1970)

    Article  Google Scholar 

  29. Trouvelot, A., Kough, J.L., Gianinazzi-Pearson, V.: Mesure du taux de mycorhization VA d'un système radiculaire. Recherche de méthode d'estimation ayant une signification fonctionnelle. In: Physiological and Genetical Aspects of Mycorrhizae: Proceedings of the 1st European Symposium on Mycorrhizae, Dijon, pp 217–221 (1986)

  30. Vance, E.D., Brookes, P.C., Jenkinson, D.S.: An extraction method for measuring soil microbial biomass-C. Soil Biol. Biochem. 19, 703–707 (1987). https://doi.org/10.1016/0038-0717(87)90052-6

    Article  Google Scholar 

  31. Mimouni, Y., Siboukeur, O.: Etude des propriétés nutritives et diététiques des sirops de dattes extraits par diffusion, en comparaison avec les sirops à haute teneur en fructose (isoglucoses), issus de l’industrie de l’amidon. Ann. Sci. Technol. 3(1), 11–11 (2011)

    Google Scholar 

  32. Hinsinger, P.: Bioavailability of soil inorganic P in the rhizosphere as affected by root- induced chemical changes: a review. Plant Soil 237, 173–195 (2001). https://doi.org/10.1023/A:1013351617532

    Article  Google Scholar 

  33. Walker, D.J., Clemente, R., Bernal, M.P.: Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere 57, 215–224 (2004). https://doi.org/10.1016/j.chemosphere.2004.05.020

    Article  Google Scholar 

  34. Larbi, M.: Influence de la qualité des composts et de leurs extraits sur la protection des plantes contre les maladies fongiques (Doctoral dissertation, Université de Neuchâtel) (2006)

  35. Aslam, D.N., Horwath, W., VanderGheynst, J.S.: Comparison of several maturity indicators for estimating phytotoxicity in compost-amended soil. Waste Manag. 28, 2070–2076 (2008). https://doi.org/10.1016/j.wasman.2007.08.026

    Article  Google Scholar 

  36. Carballo, T., Gil, M.V., Calvo, L.F., Morán, A.: The influence of aeration system, temperature and compost origin on the phytotoxicity of compost tea. Compost Sci. Util. 17, 127–139 (2009). https://doi.org/10.1080/1065657X.2009.10702411

    Article  Google Scholar 

  37. Wong, J.W.C., Li, K., Fang, M., Su, D.C.: Toxicity evaluation of sewage sludges in Hong Kong. Environ. Int. 27, 373–380 (2001). https://doi.org/10.1016/S0160-4120(01)00088-5

    Article  Google Scholar 

  38. Chong, C., Cline, R.A., Rinker, D.L.: Growth on mineral nutrient status of containerized woody species in media amended with spent mushroom compost. J. Am. Soc. Hortic. Sci. 116, 242–247 (1991). https://doi.org/10.21273/JASHS.116.2.242

    Article  Google Scholar 

  39. González-Hernández, A.I., Suárez-Fernández, M.B., Pérez-Sánchez, R., Gómez-Sánchez, M.Á., Morales-Corts, M.R.: Compost tea induces growth and resistance against Rhizoctonia solani and Phytophthora capsici in Pepper. Agronomy 11, 781 (2021). https://doi.org/10.3390/agronomy11040781

    Article  Google Scholar 

  40. Campitelli, P., Ceppi, S.: Chemical, physical and biological compost and vermicompost characterization: a chemometric study. Chemom. Intell. Lab. Syst. 90, 64–71 (2008). https://doi.org/10.1016/j.chemolab.2007.08.001

    Article  Google Scholar 

  41. Scheuerell, S.J., Mahaffee, W.F.: Compost tea as a container medium drench for suppressing seedling damping-off caused by Pythium ultimum. Phytopathology 94, 1156–1163 (2004)

    Article  Google Scholar 

  42. Li, X., Wang, X., Shi, X., Wang, Q., Li, X., Zhang, S.: Compost tea-mediated induction of resistance in biocontrol of strawberry Verticillium wilt. J. Plant Dis. Prot. 127, 257–268 (2020). https://doi.org/10.1007/s41348-019-00290-0

    Article  Google Scholar 

  43. Frankenberger, W.T., Jr., Dick, W.A.: Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Sci. Soc. Am. J. 47, 945–951 (1983). https://doi.org/10.2136/sssaj1983.03615995004700050021x

    Article  Google Scholar 

  44. Al-Jasass, F.M., Al-Eid, S.M., Ali, S.H.: A comparative study on date syrup (dips) as substrate for the production of baker's yeast (Saccharomyces cerevisiae). In: IV International Date Palm Conference, vol. 882, pp. 699–704 (2010)

  45. Carballo, T., Gil, M.V., Gómez, X., González-Andrés, F., Morán, A.: Characterization of different compost extracts using Fourier-transform infrared spectroscopy (FTIR) and thermal analysis. Biodegradation 19, 815–830 (2008). https://doi.org/10.1007/s10532-008-9184-4

    Article  Google Scholar 

  46. Fukushima, M., Yamamoto, K., Ootsuka, K., Komai, T., Aramaki, T., Ueda, S., Horiya, S.: Effects of the maturity of wood waste compost on the structural features of humic acids. Bioresour. Technol. 100, 791–797 (2009). https://doi.org/10.1016/j.biortech.2008.06.030

    Article  Google Scholar 

  47. Wang, Q., Awasthi, M.K., Zhao, J., Ren, X., Wang, M., Li, R., Zhen, W., Zhang, Z.: Utilization of medical stone to improve the composition and quality of dissolved organic matter in composted pig manure. J. Clean. Prod. 197, 472–478 (2018). https://doi.org/10.1016/j.jclepro.2018.06.230

    Article  Google Scholar 

  48. Smidt, E., Meissl, K.: The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Manag. 27, 268–276 (2007). https://doi.org/10.1016/j.wasman.2006.01.016

    Article  Google Scholar 

  49. Smith, B.A., Eudoxie, G., Stein, R., Ramnarine, R., Raghavan, V.: Effect of neem leaf inclusion rates on compost physico-chemical, thermal and spectroscopic stability. Waste Manag. 114, 136–147 (2020). https://doi.org/10.1016/j.wasman.2020.06.026

    Article  Google Scholar 

  50. Bernal-Vicente, A., Ros, M., Tittarelli, F., Intrigliolo, F., Pascual, J.A.: Citrus compost and its water extract for cultivation of melon plants in greenhouse nurseries. Evaluation of nutriactive and biocontrol effects. Bioresour. Technol. 99, 8722–8728 (2008). https://doi.org/10.1016/j.biortech.2008.04.019

    Article  Google Scholar 

  51. El-Masry, M.H., Khalil, A.I., Hassouna, M.S., Ibrahim, H.A.H.: In situ and in vitro suppressive effect of agricultural composts and their water extracts on some phytopathogenic fungi. World J. Microbiol. Biotechnol. 18, 551–558 (2002). https://doi.org/10.1023/A:1016302729218

    Article  Google Scholar 

  52. Pane, C., Spaccini, R., Piccolo, A., Celano, G., Zaccardelli, M.: Disease suppressiveness of agricultural greenwaste composts as related to chemical and bio-based properties shaped by different on-farm composting methods. Biol. Control. 137, 104026 (2019). https://doi.org/10.1016/j.biocontrol.2019.104026

    Article  Google Scholar 

  53. St. Martin, C.C.G., Brathwaite, R.A.I.: Compost and compost tea: principles and prospects as substrates and soil-borne disease management strategies in soil-less vegetable production. Biol. Agric. Hortic. 28(1), 1–33 (2012). https://doi.org/10.1080/01448765.2012.671516

    Article  Google Scholar 

  54. St. Martin, C.C.G., Dorinvil, W., Brathwaite, R.A.I., Ramsubhag, A.: Effects and relationships of compost type, aeration and brewing time on compost tea properties, efficacy against Pythium ultimum, phytotoxicity and potential as a nutrient amendment for seedling production. Biol. Agric. Hortic. 28(3), 185–205 (2012). https://doi.org/10.1080/01448765.2012.727667

    Article  Google Scholar 

  55. Bakhshandeh, S., Corneo, P.E., Mariotte, P., Kertesz, M.A., Dijkstra, F.A.: Effect of crop rotation on mycorrhizal colonization and wheat yield under different fertilizer treatments. Agric. Ecosyst. Environ. 247, 130–136 (2017). https://doi.org/10.1016/j.agee.2017.06.027

    Article  Google Scholar 

  56. Olsson, P.A., Baath, E., Jakobsen, I.: Phosphorus effects on the mycelium and storage structures of an arbuscular mycorrhizal fungus as studied in the soil and roots by analysis of fatty acid signatures. Appl. Environ. Microbiol. 63, 3531–3538 (1997)

    Article  Google Scholar 

  57. Harinikumar, K.M., Bagyaraj, D.J.: Effect of cropping sequence, fertilizers and farmyard manure on vesicular-arbuscular mycorrhizal fungi in different crops over three consecutive seasons. Biol. Fertil. Soils. 7, 173–175 (1989). https://doi.org/10.1007/BF00292578

    Article  Google Scholar 

  58. De Graaff, M.A., Hornslein, N., Throop, H.L., Kardol, P., van Diepen, L.T.: Effects of agricultural intensification on soil biodiversity and implications for ecosystem functioning: a meta-analysis. Adv. Agron. 155, 1–44 (2019). https://doi.org/10.1016/bs.agron.2019.01.001

    Article  Google Scholar 

  59. Otero, M., Salcedo, I., Txarterina, K., González-Murua, C., Duñabeitia, M.K.: Quality assessment of Pinus radiata production under sustainable nursery management based on compost tea. J. Soil Sci. Plant Nutr. 182, 356–366 (2019). https://doi.org/10.1002/jpln.201800309

    Article  Google Scholar 

  60. Chu, H., Lin, X., Fujii, T., Morimoto, S., Yagi, K., Hu, J., Zhang, J.: Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biol. Biochem. 39, 2971–2976 (2007). https://doi.org/10.1016/j.soilbio.2007.05.031

    Article  Google Scholar 

  61. Celebi, S.Z., Demir, S., Celebi, R., Durak, E.D., Yilmaz, I.H.: The effect of Arbuscular Mycorrhizal Fungi (AMF) applications on the silage maize (Zea mays L.) yield in different irrigation regimes. Eur. J. Soil Biol. 46, 302–305 (2010). https://doi.org/10.1016/j.ejsobi.2010.06.002

    Article  Google Scholar 

  62. Pane, C., Palese, A.M., Spaccini, R., Piccolo, A., Celano, G., Zaccardelli, M.: Enhancing sustainability of a processing tomato cultivation system by using bioactive compost teas. Sci. Hortic. 202, 117–124 (2016). https://doi.org/10.1016/j.scienta.2016.02.034

    Article  Google Scholar 

  63. Mohd Din, A.R.J., Cheng, K.K., Sarmidi, M.R.: Assessment of compost extract on yield and phytochemical contents of Pak Choi (Brassica rapa cv. chinensis) grown under different fertilizer strategies. Commun. Soil Sci. Plant Anal. 48, 274–284 (2017). https://doi.org/10.1080/00103624.2016.1269793

    Article  Google Scholar 

  64. Mahmoud, E., El-Gizawy, E., Geries, L.: Effect of compost extract, N2-fixing bacteria and nitrogen levels applications on soil properties and onion crop. Arch. Agron. Soil Sci. 61, 185–201 (2014). https://doi.org/10.1080/03650340.2014.928409

    Article  Google Scholar 

Download references

Funding

This work was partly supported by the R4D project “Application of organic bio-fertilizer technology to improve the sustainability of date palm production and cultivation” with the grand number IZ07Z0_160904 funded by the R4D program, the Swiss Program for Research on Global Issues for Development, a partnership of the Swiss Agency for Development and Cooperation and the Swiss National Science Foundation. The first author wishes to acknowledge the Moroccan CNRST “Centre National pour la Recherche Scientifique et Technique” for a scholarship grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachid Bouamri.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ou-Zine, M., El Hilali, R., Haggoud, A. et al. Effects and Relationships of Compost Dose and Organic Additives on Compost Tea Properties, Efficacy Against Fusarium oxysporum and Potential Effect on Endomycorrhization and Growth of Zea mays L.. Waste Biomass Valor (2022). https://doi.org/10.1007/s12649-022-01795-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12649-022-01795-w

Keywords

  • Compost valorization
  • Nutrient additives
  • Arbuscular mycorrhizal fungi
  • Soil microorganisms