Skip to main content

Advertisement

Log in

Evaluation of the Rheological and Mechanical Properties of Mixed Plastic Waste-Based Composites

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This study evaluated the mechanical, thermal, water soak, and rheological properties of mixed plastic waste (MPW) in combination with fibers derived from residual hops bines and coupling agents or dicumyl peroxide (DCP) to form composite materials. Hop bines were pulped to afford individual hop fibers (HF) in 45% yield with 78% carbohydrate content. The MPW comprised mainly of PET, paper, PE and PEVA. Tensile moduli and strength of the formulations ranged between 1.1 and 2.0 GPa and 11 and 14 MPa, respectively. The addition of hops fiber (HF) improved the tensile modulus of the formulations by 40%. Tensile strength was improved by the addition of coupling agents by 11% and this was supported by determining the adhesion factor by dynamic mechanical analysis. However, the addition of DCP resulted in a reduction of tensile properties. The melt properties of the formulations showed shear thinning behavior and followed the power-law model. The water absorption tests for most of the MPW formulations gave an 11% weight gain over 83 d except for the DCP treated composites (14–16%). The fabricated composites can be used in non-structural applications such as (garden trim, siding, pavers, etc.).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data will be available on reasonable request.

References

  1. “National Overview: Facts and Figures on Materials, Wastes and Recycling | Facts and Figures about Materials, Waste and Recycling | US EPA.” https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials. Accessed 22 Feb 2021.

  2. Sigler, M.: The effects of plastic pollution on aquatic wildlife: current situations and future solutions. Water Air Soil Pollut (2014). https://doi.org/10.1007/s11270-014-2184-6

    Article  Google Scholar 

  3. Kolapkar, S.S., Zinchik, S., Xu, Z., McDonald, A.G., Bar-Ziv, E.: Integration of thermal treatment and extrusion by compounding for processing various wastes for energy applications. Energy Fuels 35(15), 12227–12236 (2021). https://doi.org/10.1021/acs.energyfuels.1c01836

    Article  Google Scholar 

  4. Jayaraman, K., Bhattacharyya, D.: Mechanical performance of woodfibre-waste plastic composite materials. Resour. Conserv. Recycl. 41(4), 307–319 (2004). https://doi.org/10.1016/j.resconrec.2003.12.001

    Article  Google Scholar 

  5. Badrinath, R., Senthilvelan, T.: Comparative investigation on mechanical properties of banana and sisal reinforced polymer based composites. Procedia Mater. Sci. 5, 2263–2272 (2014). https://doi.org/10.1016/j.mspro.2014.07.444

    Article  Google Scholar 

  6. Hsissou, R., Seghiri, R., Benzekri, Z., Hilali, M., Rafik, M., Elharfi, A.: Polymer composite materials: a comprehensive review. Compos. Struct. 262, 113640 (2021). https://doi.org/10.1016/J.COMPSTRUCT.2021.113640

    Article  Google Scholar 

  7. Aljnaid, M., Banat, R.: Effect of coupling agents on the olive pomace-filled polypropylene composite. E-Polymers 21(1), 377–390 (2021). https://doi.org/10.1515/EPOLY-2021-0038/ASSET/GRAPHIC/J_EPOLY-2021-0038_FIG_011.JPG

    Article  Google Scholar 

  8. Mohanty, S., Verma, S.K., Nayak, S.K.: Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites. Compos. Sci. Technol. 66(3–4), 538–547 (2006). https://doi.org/10.1016/j.compscitech.2005.06.014

    Article  Google Scholar 

  9. Gu, J., Xu, H., Wu, C.: Thermal and crystallization properties of HDPE and HDPE/PP blends modified with DCP. Adv. Polym. Technol. 33(1), 1–5 (2014). https://doi.org/10.1002/adv.21384

    Article  Google Scholar 

  10. Lee S. -Y., Kang I. -A., Park B. -S., Doh G. -H., and Park B. -D., “Effects of Filler and Coupling Agent on the Properties of Bamboo Fiber-Reinforced Polypropylene Composites:,” http://dx.doi.org/https://doi.org/10.1177/0731684408094070, vol. 28, no. 21, pp. 2589–2604, Sep. 2008, doi: https://doi.org/10.1177/0731684408094070.

  11. Alkbir, M.F.M., Sapuan, S.M., Nuraini, A.A., Ishak, M.R.: Fibre properties and crashworthiness parameters of natural fibre-reinforced composite structure: a literature review. Compos. Struct. 148, 59–73 (2016). https://doi.org/10.1016/J.COMPSTRUCT.2016.01.098

    Article  Google Scholar 

  12. Lei, Y., Wu, Q.: Wood plastic composites based on microfibrillar blends of high density polyethylene/poly(ethylene terephthalate). Biores. Technol. 101, 3665–3671 (2010). https://doi.org/10.1016/j.biortech.2009.12.069

    Article  Google Scholar 

  13. Pérez-Fonseca, A.A., Robledo-Ortíz, J.R., Moscoso-Sánchez, F.J., Fuentes-Talavera, F.J., Rodrigue, D., González-Núñez, R.: Self-hybridization and coupling agent effect on the properties of natural Fiber/HDPE composites. J. Polym. Environ. 23(1), 126–136 (2015). https://doi.org/10.1007/s10924-014-0706-3

    Article  Google Scholar 

  14. Shahzad, A.: Hemp fiber and its composites-a review. https://doi.org/10.1177/0021998311413623.

  15. Musio, S., Müssig, J., Amaducci, S.: Optimizing hemp fiber production for high performance composite applications. Front. Plant Sci. 9, 1702 (2018). https://doi.org/10.3389/FPLS.2018.01702

    Article  Google Scholar 

  16. Shah, N., Fehrenbach, J., Ulven, C.A.: Hybridization of hemp fiber and recycled-carbon fiber in polypropylene composites. Sustainability (2019). https://doi.org/10.3390/su11113163

    Article  Google Scholar 

  17. Mazzanti, V., Mollica, F., el Kissi, N.: Rheological and mechanical characterization of polypropylene-based wood plastic composites. Polym. Compos. 37(12), 3460–3473 (2016). https://doi.org/10.1002/pc.23546

    Article  Google Scholar 

  18. Ogah, A.O., Afiukwa, J.N., Nduji, A.A.: Characterization and comparison of rheological properties of agro fiber filled high-density polyethylene bio-composites. Open J. Polym. Chem. 04(01), 12–19 (2014). https://doi.org/10.4236/ojpchem.2014.41002

    Article  Google Scholar 

  19. Zou, Y., Reddy, N., Yang, Y.: Using hop bines as reinforcements for lightweight polypropylene composites. J. Appl. Polym. Sci. 116(4), 2366–2373 (2010). https://doi.org/10.1002/APP.31770

    Article  Google Scholar 

  20. Adefisan, O.O., McDonald, A.G.: Evaluation of the strength, sorption and thermal properties of bamboo plastic composites. Maderas 21(1), 3–14 (2019). https://doi.org/10.4067/S0718-221X2019005000101

    Article  Google Scholar 

  21. Reddy, N., Yang, Y.: Properties of natural cellulose fibers from hop stems. Carbohydr. Polym. 77(4), 898–902 (2009). https://doi.org/10.1016/j.carbpol.2009.03.013

    Article  Google Scholar 

  22. Ariff, Z.M., Ariffin, A., Rahim, N.A.A., Jikan, S.S.: Rheological behaviour of polypropylene through extrusion and capillary rheometry. InTech, pp. 29–48, 2012, [Online]. https://www.intechopen.com/books/polypropylene/rheological-behaviour-of-polypropylene-through-extrusion-and-capillary-rheometry

  23. Hsissou, R., Bekhta, A., Dagdag, O., el Bachiri, A., Rafik, M., Elharfi, A.: Rheological properties of composite polymers and hybrid nanocomposites. Heliyon 6(6), e04187 (2020). https://doi.org/10.1016/J.HELIYON.2020.E04187

    Article  Google Scholar 

  24. Mazzanti, V., Mollica, F.: A review of wood polymer composites rheology and its implications for processing. Polymers 12, 2304 (2020). https://doi.org/10.3390/POLYM12102304

    Article  Google Scholar 

  25. Shevelko, V.P.: Polymer and composite rheology, second edition. IEEE Electr. Insul. Mag. 17(2), 68 (2001). https://doi.org/10.1109/MEI.2001.917553

    Article  Google Scholar 

  26. Amaducci, S., Müssig, J., Zatta, A., Venturi, G.: An innovative production system for hemp fibre for textile destinations : from laboratory results to industrial validation. In: International Conference on Flax and Other Bast Plants, pp. 104–117 (2008).

  27. Aurelia, C., Murdiati, A.S., Ningrum, A.: Effect of sodium hydroxide and sodium hypochlorite on the physicochemical characteristics of jack bean skin (Canavalia ensiformis). Pak. J. Nutr. 18(2), 193–200 (2019). https://doi.org/10.3923/pjn.2019.193.200

    Article  Google Scholar 

  28. Iiyama, K., Wallis, A.F.A.: An improved acetyl bromide procedure for determining lignin in woods and wood pulps. Wood Sci. Technol. 22(3), 271–280 (1988). https://doi.org/10.1007/BF00386022

    Article  Google Scholar 

  29. Green, T.R., Popa, R.: A simple assay for monitoring cellulose in paper-spiked soil. J. Polym. Environ. 18(4), 634–637 (2010). https://doi.org/10.1007/s10924-010-0239-3

    Article  Google Scholar 

  30. Xu, Z., et al.: Bypassing energy barriers in fiber-polymer torrefaction. Front. Energy Res. (2021). https://doi.org/10.3389/fenrg.2021.643371

    Article  Google Scholar 

  31. Rodi, E.G., Langlois, V., Renard, E., Sansalone, V., Lemaire, T.: Biocomposites based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) and Miscanthus giganteus fibers with improved fiber/matrix interface. Polymers (2018). https://doi.org/10.3390/polym10050509

    Article  Google Scholar 

  32. Orji, B.O., McDonald, A.G.: Evaluation of the mechanical, thermal and rheological properties of recycled polyolefins rice-hull composites. Materials (2020). https://doi.org/10.3390/ma13030667

    Article  Google Scholar 

  33. Kunej, U., Mikulič-Petkovšek, M., Radišek, S., Štajner, N.: Changes in the phenolic compounds of hop (Humulus lupulus l.) induced by infection with verticillium nonalfalfae, the causal agent of hop verticillium wilt. Plants 9(7), 1–16 (2020). https://doi.org/10.3390/plants9070841

    Article  Google Scholar 

  34. Detmann, E., de Oliveira Franco, M., Gomes, D.Í., Barbosa, M.M., de Campos Valadares Filho, S.: Notas Científicas: Protein contamination on klason lignin contents in tropical grasses and legumes. Pesquisa Agropecuaria Brasileira 49(12), 994–997 (2014). https://doi.org/10.1590/S0100-204X2014001200010.

  35. Chércoles Asensio, R., San Andrés Moya, M., de La Roja, J.M., Gómez, M.: Analytical characterization of polymers used in conservation and restoration by ATR-FTIR spectroscopy. Anal. Bioanal. Chem. 395(7), 2081–2096 (2009). https://doi.org/10.1007/s00216-009-3201-2

    Article  Google Scholar 

  36. Jung, M.R., et al.: Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. (2018). https://doi.org/10.1016/j.marpolbul.2017.12.061.

  37. Mayo, D.W., Miller, F.A., Hannah, R.W.: Course Notes on the Interpretation of Infrared and Raman Spectra. Wiley, Hoboken (2004). https://doi.org/10.1002/0471690082

    Book  Google Scholar 

  38. Ahmad, E.E.M., Luyt, A.S.: Effects of organic peroxide and polymer chain structure on morphology and thermal properties of sisal fibre reinforced polyethylene composites. Composite A 43(4), 703–710 (2012). https://doi.org/10.1016/j.compositesa.2011.12.011

    Article  Google Scholar 

  39. Ndiaye, D., Tidjani, A.: Effects of coupling agents on thermal behavior and mechanical properties of wood flour/polypropylene composites. J Compos Mater 46(24), 3067–3075 (2012). https://doi.org/10.1177/0021998311435675

    Article  Google Scholar 

  40. Gloor, P.E., Tang, Y., Kostanska, A.E., Hamielec, A.E.: Chemical modification of polyolefins by free radical mechanisms: a modelling and experimental study of simultaneous random scission, branching and crosslinking. Polymer 35(5), 1012–1030 (1994). https://doi.org/10.1016/0032-3861(94)90946-6

    Article  Google Scholar 

  41. Aljnaid, M., Banat, R.: Effect of coupling agents on the olive pomace-filled polypropylene composite. Polymers 21(1), 377–390 (2021). https://doi.org/10.1515/epoly-2021-0038

    Article  Google Scholar 

  42. Wang, X., Yu, Z., McDonald, A.G.: Effect of different reinforcing fillers on properties, interfacial compatibility and weatherability of wood-plastic composites. J. Bionic Eng. 16(2), 337–353 (2019). https://doi.org/10.1007/s42235-019-0029-0

    Article  Google Scholar 

  43. da Costa, H.M., Ramos, V.D., Rocha, M.C.G.: Rheological properties of polypropylene during multiple extrusion. Polym. Testing 24(1), 86–93 (2005). https://doi.org/10.1016/J.POLYMERTESTING.2004.06.006

    Article  Google Scholar 

  44. Sapieha, S., Allard, P., Zang, Y.H.: Dicumyl peroxide-modified cellulose/LLDPE composites. J. Appl. Polym. Sci. 41(9–10), 2039–2048 (1990). https://doi.org/10.1002/APP.1990.070410910

    Article  Google Scholar 

  45. Gu, R., Kokta, B.V.: Mechanical properties of PP composites reinforced with BCTMP aspen fiber. J. Thermoplast. Compos. Mater. 23(4), 513–542 (2009). https://doi.org/10.1177/0892705709355232

    Article  Google Scholar 

  46. Ou, R., Xie, Y., Wolcott, M.P., Yuan, F., Wang, Q.: Effect of wood cell wall composition on the rheological properties of wood particle/high density polyethylene composites. Compos. Sci. Technol. 93, 68–75 (2014). https://doi.org/10.1016/j.compscitech.2014.01.001

    Article  Google Scholar 

  47. Wei, L., Stark, N.M., McDonald, A.G.: Interfacial improvements in biocomposites based on poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastics reinforced and grafted with α-cellulose fibers. Green Chem. 17(10), 4800–4814 (2015). https://doi.org/10.1039/c5gc01568e

    Article  Google Scholar 

  48. Dealy, J.M., Wissbrun, K.F.: Melt Rheology and Its Role in Plastics Processing. Melt Rheol Role Plast Process (1990). https://doi.org/10.1007/978-94-009-2163-4

    Article  Google Scholar 

  49. Akil, H., Zamri, M.H.: Performance of natural fiber composites under dynamic loading. Nat. Fibre Compos. Mater. Process. Appl. (2013). https://doi.org/10.1533/9780857099228.3.323

    Article  Google Scholar 

  50. Ornaghi, H.L., Bolner, A.S., Fiorio, R., Zattera, A.J., Amico, S.C.: Mechanical and dynamic mechanical analysis of hybrid composites molded by resin transfer molding. J. Appl. Polym. Sci. (2010). https://doi.org/10.1002/app.32388

    Article  Google Scholar 

  51. Alkbir, M.F.M., Sapuan, S.M., Nuraini, A.A., Ishak, M.R.: Fibre properties and crashworthiness parameters of natural fibre-reinforced composite structure: a literature review. Compos. Struct. 148, 59–73 (2016). https://doi.org/10.1016/j.compstruct.2016.01.098

    Article  Google Scholar 

  52. Ochi, S.: Mechanical properties of kenaf fibers and kenaf/PLA composites. Mech. Mater. 40(4–5), 446–452 (2008). https://doi.org/10.1016/j.mechmat.2007.10.006

    Article  Google Scholar 

  53. Sardot, T., Smith, G., McDonald, A.G.: Valorizing mixed plastic wastes from cardboard recycling by amendment with wood, cement and ash. J. Reinf. Plast. Compos. 31(21), 1488–1497 (2012). https://doi.org/10.1177/0731684412459984

    Article  Google Scholar 

  54. Rodi, E.G., Langlois, V., Renard, E., Sansalone, V., Lemaire, T.: Biocomposites based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) and Miscanthus giganteus fibers with improved fiber/matrix interface. Polymers (2018). https://doi.org/10.3390/POLYM10050509

    Article  Google Scholar 

  55. Fabiyi, J.S., McDonald, A.G.: Effect of wood species on property and weathering performance of wood plastic composites. Composite A 41(10), 1434–1440 (2010). https://doi.org/10.1016/j.compositesa.2010.06.004

    Article  Google Scholar 

  56. Cisneros-López, E.O., González-López, M.E., Pérez-Fonseca, A.A., González-Núñez, R., Rodrigue, D., Robledo-Ortíz, J.R.: Effect of fiber content and surface treatment on the mechanical properties of natural fiber composites produced by rotomolding. Compos. Interfaces 24(1), 35–53 (2017). https://doi.org/10.1080/09276440.2016.1184556

    Article  Google Scholar 

  57. Azizi, H., Ghasemi, I.: Reactive extrusion of polypropylene: Production of controlled-rheology polypropylene (CRPP) by peroxide-promoted degradation. Polym. Test. 23(2), 137–143 (2004). https://doi.org/10.1016/S0142-9418(03)00072-2

    Article  Google Scholar 

  58. Gu, R., Kokta, B.V.: Mechanical properties of pp composites reinforced with BCTMP aspen fiber. J. Thermoplast. Compos. Mater. 23(4), 513–542 (2010). https://doi.org/10.1177/0892705709355232

    Article  Google Scholar 

  59. Stark, N.M., Berger, M.J.: Effect of particle size on properties of wood-flour reinforced polypropylene composites. In: Fourth International Conference on Woodfiber-Plastic Composites, pp. 134–143\r324 (1997)

  60. Liu, Y.H., Xu, J.Q., Ding, H.J.: Mechanical behavior of a fiber end in short fiber reinforced composites. Int. J. Eng. Sci. 37(6), 753–770 (1999). https://doi.org/10.1016/S0020-7225(98)00096-2

    Article  MATH  Google Scholar 

  61. Bouafif, H., Koubaa, A., Perré, P., Cloutier, A.: Effects of fiber characteristics on the physical and mechanical properties of wood plastic composites. Composite A 40(12), 1975–1981 (2009). https://doi.org/10.1016/j.compositesa.2009.06.003

    Article  Google Scholar 

  62. Holbery, J., Houston, D.: Natural-fiber-reinforced polymer composites in automotive applications. Jom 58(11), 80–86 (2006). https://doi.org/10.1007/s11837-006-0234-2

    Article  Google Scholar 

  63. Sfiligoj, M., Hribernik, S., Stana, K., Kree, T.: Plant fibres for textile and technical applications. Adv. Agrophys. Res. (2013). https://doi.org/10.5772/52372

    Article  Google Scholar 

  64. Joseph, P.V., Rabello, M.S., Mattoso, L.H.C., Joseph, K., Thomas, S.: Environmental effects on the degradation behaviour of sisal fibre reinforced polypropylene composites. Compos. Sci. Technol. 62(10–11), 1357–1372 (2002). https://doi.org/10.1016/S0266-3538(02)00080-5

    Article  Google Scholar 

  65. Kanazawa H.: Improvement of hydrophilic property of plastic materials and its application. Sci. Rep. Fukushima Univ. no. 67, pp. 45–59

  66. Bouafif, H., Koubaa, A., Perré, P., Cloutier, A., Riedl, B.: Wood particle/high-density polyethylene composites: thermal sensitivity and nucleating ability of wood particles. J. Appl. Polym. Sci. 113(1), 593–600 (2009). https://doi.org/10.1002/app.30129

    Article  Google Scholar 

  67. Pérez-Fonseca, A.A., Arellano, M., Rodrigue, D., González-Núñez, R., Robledo-Ortíz, J.R.: Effect of coupling agent content and water absorption on the mechanical properties of coir-agave fibers reinforced polyethylene hybrid composites. Polym. Compos. 37(10), 3015–3024 (2016). https://doi.org/10.1002/PC.23498

    Article  Google Scholar 

  68. Luo, S., Cao, J., McDonald, A.G.: Esterification of industrial lignin and its effect on the resulting poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or polypropylene blends. Ind. Crops Prod. 97, 281–291 (2017). https://doi.org/10.1016/j.indcrop.2016.12.024

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from (1) National Science Foundation grant number 1827364; (2) M.J. Murdock Charitable Trust for the purchase of the twin-screw extruder; (3) Margaret Zee for collecting the hop bines, (4) USDA-CSREES grant 2007-34158-17640 for support in the purchase of the DSC, and (5) Charles Olsen at Savanture LLC for providing the coupling agents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando G. McDonald.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 834 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ewurum, L., Jokic, D., Bar-Ziv, E. et al. Evaluation of the Rheological and Mechanical Properties of Mixed Plastic Waste-Based Composites. Waste Biomass Valor 13, 4625–4637 (2022). https://doi.org/10.1007/s12649-022-01794-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01794-x

Keywords

Navigation